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ABSTRACT  

 Pavement undergoes a process of deterioration resulting from repeated traffic and/or 

environmental loading. By detecting pavement distress and damage early enough, it is 

possible for transportation agencies to develop more effective pavement maintenance and 

rehabilitation programs and thereby produce significant cost and time saving. Structural 

Health Monitoring (SHM) has been conceived as a systematic method for assessing the 

structural state of pavement infrastructure systems and documenting their condition. Over the 

past several years, this process has traditionally been accomplished through the use of wired 

sensors embedded in bridge and highway pavement. However, the use of wired sensors has 

limitations for long-term SHM and presents other associated cost and safety concerns. 

Recently, Micro-Electromechanical Systems (MEMS) and Nano-Electromechanical Systems 

(NEMS) have emerged as advanced/smart-sensing technologies with potential for cost-

effective and long-term SHM. 

 To this effect, a study has thus been initiated to evaluate the off-the-shelf MEMS 

sensors and wireless sensors, identify their limitations, and demonstrate how the acquired 

sensor data can be utilized to monitor and assess concrete pavement behavior. The feasibility 

of implementing a wireless communication system into a MEMS sensor was also 

investigated. 

 Off-the-shelf MEMS sensors and wireless sensors were deployed in a newly 

constructed concrete highway pavement. During the monitoring period, the temperature, 

moisture, and strain profiles were obtained and analyzed. The monitored data captured the 

effects of daily and seasonal weather changes on concrete pavement, especially, early-age 

curling and warping behavior of concrete pavement. These sensors, however, presented 
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issues for long-term operation, so to improve performance, a ZigBee protocol-based wireless 

communication system was implemented for the MEMS sensors.  

 By synthesizing knowledge and experience gained from literature review, field 

demonstrations, and implementation of wireless systems, issues associated with sensor 

selection, sensor installation, sensor packaging to prevent damage from road construction, 

and monitoring for concrete pavement SHM are summarized. The requirements for achieving 

Smart Pavement SHM are then explored to develop a conceptual design of smart health 

monitoring of both highway and airport pavement systems for next-generation pavement 

SHM. A cost evaluation was also performed for traditional as well as MEMS sensors and 

other potential smart technologies for SHM.  
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CHAPTER 1   

INTRODUCTION 

 

Background 

Pavement is a fundamental transportation infrastructure system to sustain both 

moving vehicles and people. Common pavement system construction materials include soil, 

aggregates, concrete, and asphalt. Pavement material types for pavement surface layer can be 

divided into Portland Cement Concrete (PCC) and Hot Mix Asphalt (HMA), also known as 

rigid (PCC) pavement and flexible (HMA) pavement, respectively. 

Portland Cement Concrete (PCC) is a mixture of cement, aggregates, and water that 

gains strength in its initial stage through a reaction called hydration. The first use of PCC for 

pavement in the United States was a local street construction project in Ohio in 1893; from 

the 1970s to now PCC is widely used in highway pavement construction (Pasko, 1998). 

Currently, there are more than 64,000 miles of paved concrete roads in the United States 

(FHWA, 2012a). Asphalt concrete is a mixture of mineral aggregates and asphalt which will 

be compacted in the field for pavement construction. Similar to PCC pavement, HMA 

pavement is also widely used in pavement construction in the United States. 

 Like any other man-made structural system, pavement can fail due to environmental 

load, traffic load, or a combination of both. Environmental load such as temperature (curling 

stress) and moisture (warping stress) can cause volumetric distortion at an early stage of PCC 

pavement. Such environmental and mechanical loads combined with PCC aging will greatly 

influence long-term pavement performance and pavement distress (Ruiz et al., 2005). 
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According to the ASCE 2013 Report Card, the current national pavement system is 

assessed a “D” grade, reflecting poor pavement condition. The Federal Highway 

Administration estimates that it needs approximately $170 billion to effectively improve 

pavement condition and performance. Structural Health Monitoring (SHM) is considered to 

be a systematic approach that could be employed to monitor and preserve rapidly-

deteriorating pavement assets. Traditional SHM approaches utilizing wired sensors have 

been used to track pavement response under environmental and traffic loads, including 

temperature, moisture, strain, stress, deflection, etc. However, over the past twenty years, 

fewer pavement instrumentation projects have been initiated and almost all of them were 

associated with negative issues such as high array density, wire damage, high installation 

cost and time, low survivability of wired sensors for long term operation, etc. Recent 

achievements in Micro-Electromechanical Systems (MEMS) or Nano-Electromechanical 

Systems (NEMS) technology make it possible to manufacture sensors using microfabrication 

techniques. This kind of advanced/smart-sensing technology, including wireless sensors, 

shows vast potential for improving the traditional SHM approach. However, MEMS-based 

and wireless-based smart-sensing technologies have up to now been little used for monitoring 

pavement response in the field, and the requirements for using those kinds of smart sensing 

technologies have not yet been thoroughly discussed. 

 

Research Objectives 

The overall objective of this study was to review both existing and emerging sensing 

technologies for pavement health monitoring through a detailed literature review 

supplemented by a full-scale pavement instrumentation project on a real highway. However, 
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due to limited pavement construction in the field, this thesis will more focus on the smart 

sensing technologies used for PCC pavement. The MEMS-technology-based sensing method 

represents an innovative solution to pavement infrastructure health monitoring, and wireless 

sensors generally exhibit lower installation cost and time compared with traditional wired 

sensors. However, the system requirements of Smart Pavement SHM under actual traffic load 

and weather conditions have not yet been investigated and discussed, so the specific 

objectives of this study include: 

 To evaluate the field performance of commercial off-the-shelf MEMS sensors and 

wireless sensors 

 To identify the system requirements of MEMS sensors and wireless communication 

systems for Smart Pavement SHM   

 To investigate packaging methods for wireless communication system implemented 

to MEMS sensors  

 

Thesis Organization  

This thesis consists of six chapters. Chapter 1 will introduce the background and 

objectives of this study. Chapter 2 is a comprehensive literature review of Structural Health 

Monitoring (SHM), including recent successes in applying Micro-Electromechanical 

Systems (MEMS) and wireless-system technology to SHM. In Chapter 3, the performance of 

off-the-shelf MEMS sensors for monitoring US Highway 30 pavement is discussed, and a 

concrete maturity curve based on laboratory test and field temperature data is developed. 

Chapter 4 describes field experience using a wireless system for a MEMS multifunction 

sensor in a US Highway30 highway project. Chapter 5 summarizes issues of SHM and the 



www.manaraa.com

4 

requirements of Smart Pavement SHM and provides cost evaluation and architecture of 

Smart Pavement SHM systems for both highway and airfield pavement. Chapter 6 

summarizes the conclusions and recommendations from this study. Figure 1-1 is a flow chart 

representing the thesis structure. 

 

 

 

 

  

 

 

 

  

 

 

 

 

Figure 1-1. Thesis organization flow chart. 
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CHAPTER 2  

LITERATURE REVIEW 

 

Structural Health Monitoring  

History of SHM in Civil Infrastructure 

Structural Health Monitoring (SHM) is the process of implementing structural 

damage detection strategy and evaluating structural state to learn load and response 

mechanisms (Farrar and Worden, 2007; Brownjohn, 2007). In recent years it has become a 

rapidly-growing priority for transportation infrastructures to identify and monitor structural 

deterioration. An ideal SHM application can monitor the integrity of in-service structures on 

a continuous real-time basis, and data processing and analysis can be subsequently used to 

assess the symptoms of operational anomalies that may cause service or safety issues (Wong, 

2004). 

Early development of health-monitoring techniques focusing on vibration-based 

damage identification methods can be traced to the 1970s in the oil industry and the 

aerospace community in conjunction with offshore platforms and space shuttles. 

Investigating modal properties and related quantities of civil infrastructures like bridges and 

buildings using vibration- based damage-identification methods has been done since the 

1980s. However, difficulties in using vibration-based damage-identification methods for 

large-scale structures during that time sometimes occurred, often due to variable 

environmental and operation conditions; this frequently resulted in an expensive and time-

consuming process of damage assessment (Phares et al., 2005; Qi et al., 2005; Farrar and 

Worden, 2007). 
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SHM can be widely used as an approach to in-service structural integrity assessment 

in bridges, buildings, towers, dams, offshore installations, pavements, etc. Traditional SHMs 

for such civil infrastructures have utilized wired sensors strategically deployed in the 

structures to monitor and record external conditions and associated structural response. 

Among these structures, bridges and buildings have represented the most common SHM 

applications in civil infrastructures.  SHM implemented in bridges is used to characterize 

their dynamic behavior under unpredictable mechanical and environmental loads that may 

result in unanticipated behavior (Modares and Waksmanski, 2012). The most common 

techniques include eddy current, ultrasonic, acoustic-based sensing, strain monitoring, 

corrosion monitoring, etc. SHM in building structures has been deployed to monitor 

structural performance under natural disaster conditions such as earthquakes, storms and 

harsh winds (Brownjohn, 2007). Furthermore, as a common practice, SHM implemented in 

concrete structure can also monitor concrete temperature and moisture. The producing data 

can be used to determine frame removal time during construction through monitoring of 

concrete maturity and curing processing.  

Unlike bridges and buildings structures, the application of SHM in pavement systems 

has been used to document structural responses from a combination of vehicle and 

environment loads. Monitoring sensors embedded in pavement structure has been 

investigated since the 1960s to improve pavement design methods (Potter et al., 1969; 

Rollings and Pittman, 1992). However, survivability of embedded sensors in pavement 

structure is not always high because they can be easily damaged by asphalt/concrete medium 

and harsh climate conditions.      
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Global and Local Health Monitoring 

 According to Plankis and Heyliger (2013), there are four levels of damage 

identification. From the first level to the fourth level they are, in sequence: determination of 

damage presence, identification of damage location, evaluation of damage, and prediction of 

remaining structure service life. To address the first three levels, health-monitoring methods 

can be divided into global and local health monitoring. Global health monitoring is the 

concept of using technology to detect changes in properties such as stiffness and mass change 

and other dynamic global properties caused by significant structural damage. For global 

health monitoring, there is no need to know the location or potential location of damage. The 

important modal properties for global health monitoring are resonant frequencies, mode-

shape vectors, mode-shape curvatures, a dynamic flexibility matrix, updating of modal 

parameters, and acoustic properties (Plankis and Heyliger, 2013). Local health monitoring 

refers to tracking damage progress and evaluation of damage level at known or predicted 

damage locations. In summary, global techniques are used for damage detection that may 

affect the integrity of a whole structure, while local techniques focus on small defects (Haque 

et al., 2012). Technically, traditional wired-sensors-based SHM represent a type of local 

health-monitoring technology. 

Smart Structural Health Monitoring 

 Lynch (2002) defined the term “smart structure” as “sensing and/or actuation 

technologies embedded within the system to provide insight to the structure’s response and 

an opportunity to limit responses”. Then Spencer et al. (2004) stated that a sensor must have 

features like an on-board Central-Processing-Unit (CPU), small size, wireless capability, and 

promise of low cost to be considered a smart sensor. Similarly, Nagayama and Spencer 
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(2007) stated that a sensor can be considered “smart” if it includes an on-board 

microprocessor, a wireless communication system, and sensing capability. It also should be 

battery powered and has low cost. However, Phares et al. (2005) gave a more detailed 

definition of the term “smart”. The term “smart” technology they defined is a “system 

systematically reports on the condition of the structure by automatically making engineering-

based judgments, recording a history of past patterns and intensities, and providing early 

warning for excessive conditions or for impending failure without requiring human 

intervention. These features make the system capable of providing and facilitating self-

diagnostic, real-time continuous sensing, advanced remote sensing, self-organizing, self-

identification, or self-adaptation (decision making and alarm triggering) function”. In short, 

smart SHM should enable structures to be capable of real-time continuous sensing of both 

external and internal condition changes and responding to these changes to improve 

performance without human intervention. To apply this concept to pavement, a Smart 

Pavement SHM should be long-term and cost-effective as well. However, a truly “smart” 

system or structure meeting all these requirements has never existed if this definition is 

rigorously followed. It is clear, however that a practical smart SHM could be achieved by 

employing a “smart sensor” system having features of small size, wireless function, low cost, 

and an on-board Central-Processing- Unit (CPU). 

 

Traditional SHM Approach to Pavement Infrastructure System 

Highway Pavement 

In the US, traditional SHM approaches for highway pavement infrastructure system 

have utilized full-scale test tracks instrumented by large number of sensors such as strain 
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gages, pressure cells, displacement gauges, subgrade moisture sensors, etc. The motivation 

underlying constructing and operating a full-scale pavement test track is to understand 

pavement response and behavior under realistic but controlled conditions (Hugo and Epps, 

2004). Figure 2-1 from Hugo and Epps (2004) summarizes the common sensors used in 

various test tracks. Detailed descriptions of full-scale test tracks, including MnROAD, the 

Virginia Smart Road, and the National Center for Asphalt Technology (NCAT) Test Track 

are summarized in Table 2-1.   

RIOH–ALF  
WesTrack 

HVS–A 

TxMLS 

PRF–La  RIOH–ALF  
MnROAD HVS–A RIOH–ALF  
LINTRACK TxMLS WesTrack 

LCPC–Fr RIOH–ALF  RRT–Rom HVS–A 

K–ATL HVS–A MnROAD TxMLS 

ISETH TxMLS LCPC–Fr RRT–Rom 

In–APLF PRF–La K–ATL NCAT 

HVS–SA MnROAD In–APLF MnROAD 

HVS–Nordic LCPC–Fr HVS–SA LCPC–Fr 

FHWA–PTF K–ATL HVS–Nordic K–ATL 

NAPTF HVS–Nordic NAPTF HVS–SA MnROAD 

DRTM NAPTF HVS–CRREL NAPTF LINTRACK 

HVS–CRREL DRTM RIOH–ALF CEDEX DRTM FHWA–PTF 

CEDEX HVS–CRREL HVS–A CAPTIF–NZ HVS–CRREL DRTM 

CAL/APT CEDEX TxMLS CAL/APT CEDEX CAPTIF–NZ 

ARRB–ALF CAPTIF–NZ PRF–La ARRB–ALF CAL/APT CAL/APT 

Oh–APLF ARRB–ALF MnROAD Oh–APLF ARRB–ALF Oh–APLF 

Strain gages Pressure cells Load cells Displacement gauges 
Subgrade moisture 

sensors 
Other* 

*Other instruments cited by respondents: 

Temperature sensors—Oh–APLF; CAL/APT Temperature 

gauge—DRTM Emu & Bison strain coils—CAPTIF–NZ 

LVDT—FHWA–PTF 

    Several attempts for measurement of asphalt sublayers: LINTRACK–NL 

  MnROAD—see website (http://mnroad.dot.state.mn.us/researc/Mnresearc.asp) and beyond the surface handout. 

Figure 2-1. Sensors used in traditional pavement health monitoring (Hugo and Epps, 

2004). 

http://mnroad.dot.state.mn.us/researc/Mnresearc.asp)
http://mnroad.dot.state.mn.us/researc/Mnresearc.asp)
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Table 2-1. Test tracks instrumentation. 

Projects Monitoring System Year 

MnROAD 

Over 9,500 sensors included LVDT, strain gages, 

dynamic soil pressure cells, moisture gauges, 

thermocouples, resistivity probes et al. were installed 

1991 

Virginia Smart Road 
Over 400 sensors included moisture, temperature, strain, 

vibration, weigh-in-motion sensors were installed 
1997 

NCAT Test Track in 

Auburn University 

Copper-based strain gages, temperature sensors, soil 

pressures, soil moisture sensors were installed 
2000 

 

MnROAD 

 In 1991, the MnROAD test track (See Figure 2-2) was constructed to enable civil 

engineers to conduct research on making roads longer, safer, and cheaper. The project 

funding, approximately $25,000,000, was used to build a 2.5-mile low-volume road and a 

3.5-mile main line in the I-94 roadway. Since the 1990s, more than 9,500 sensors have been 

installed in the test track to document effects produced by test vehicles. These sensors were 

linked by fiber optic or copper wires to a Data Acquisition System (DAS) connected to the 

MnROAD main building. The data collected from MnROAD were used to improve 

pavement performance and life with cost benefits related to maintenance, repairs, user 

delays, and congestion (MnROAD Brochure, 2014). Table 2-2 lists a summary of estimated 

overall cost saving from Phase 1 research (1994-2006).  It is claimed that a total of $33 

million was saved for Minnesota and a potential cost of $749 million was saved for the 

nation overall. 
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Figure 2-2. MnROAD (photo courtesy of Minnesota DOT). 

 

Table 2-2. MnROAD cost benefits (MnROAD Brochure, 2014). 

Phase I (MN) Implemented Research Annual Savings 

Spring Load Restriction Policy $14 Million 

Winter Load Increase Policy $7 Million 

Low Temperature Cracking Reduction $5.7 Million 

ME Flexible Design Method $4 Million 

ME Rigid Design Method $1.2 Million 

Sealing Pavement/ Shoulder Joints $1.2 Million 

Total $ 33.1 Million 

 

 In MnROAD, the DAS were distributed as data acquisition nodes near the test cells.  

Each data acquisition node consisted of a series of cabinets containing sensors, data 

collection devices, and AC power sources as well as communication systems. The insulated 

cabinets were heated during winter and cooled during summer by installed fans. In order to 

cost-effectively install so many sensors, the construction manager of MnROAD paid 

considerable attention to sensor life span and sensor installation plan. However, there still 

were many sensor failures reported, requiring their replacement after road construction. In 

doing so, it was found that the in-situ sensor positions differed a great deal from the 

instrumentation plan, so they had to install sensors into new holes using full-depth coring. 
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After installation, they assumed the data from the new sensors was accurate (Tompkins and 

Khazanovich, 2007). 

Virginia Smart Road 

 The Virginia Smart Road was a 5.7 mile-long limited-access highway constructed at 

the end of the 1990s. This road, as shown in Figure 2-3, links highway I-81 and Blacksburg, 

Virginia. It has all-weather test towers, variable-lighting sections, and experimental sections, 

as well as a control room for data analysis. The Virginia Smart Road contains more than 400 

installed sensors, including thermocouples, strain gages, pressure cells, time-domain 

reflectometry (TDR) probes, resistivity probes, etc. However, approximately 70% of the 

sensors failed after two years (Al-Qadi et al., 2004). 

   

Figure 2-3. Virginia Smart Road (photo courtesy of Dr. Edgar de Leon Izeppi, Virginia 

Transportation Institute). 

 

Auburn University National Center for Asphalt Technology (NCAT) Test Track 

 The NCAT test track, shown in Figure 2-4, was designed and built to evaluate and 

improve current pavement design in 2000. This 1.7-mile long test track contains more than 

46 experimental sections. The test period of NCAT test track can be divided into a first and a 
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second round of tests. The first round of tests was initiated in 2000 and finished in 2002. 

After the first round, the second round started in 2003 after several sections were replaced. 

While many sensors, including strain gages, temperature sensors, soil pressure sensors, and 

soil moisture sensors, were embedded in subgrade and asphalt pavement, almost 35% of 

them failed before 2003 (Timm et al., 2004). 

 

Figure 2-4. NCAT test track (photo courtesy of National Center for Asphalt 

Technology). 

 

Airfield Pavement 

Pavement deterioration caused by aircraft loading, temperature, and moisture 

variation can be a major concern in airport safety. Compared to highway pavement, airfield 

pavement typically deals with higher load magnitudes and higher tire pressures but fewer 

load repetitions from airplanes. Additionally, although both airfield and highway pavements 

are prone to deterioration from traffic and environment loads, airfield pavement usually 

predominately exhibits environmental-load-related rather than traffic-load-related stresses 

(FAA Advisory Circular, 2011).  
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In summer 2011, the Ankeny Regional Airport in Ankeny, Iowa reported a serious 

PCC pavement distress blowup in its runway which was caused by excessive hot weather and 

an associated heat wave. In this particular case, a Raytheon Premier One jet hit the blowup 

spot during take-off and damaged its landing gear, as shown in Figure 2-5. Blowup in an 

airport runway is of course very dangerous for aircraft operation, so it’s significant to install 

sensors in airfield pavement enabling SHM to monitor pavement properties and provide a 

warning of pavement overheating before actual pavement distress occurs so that the 

appropriate maintenance process can be launched. Table 2-3 lists traditional SHM 

applications in the US for airport pavement systems. 

 

Figure 2-5. Pavement blowup and damaged aircraft in Ankeny Regional Airport 

runway (photo courtesy of Snyder & Associates, Inc./Polk County Aviation Authority). 

 

Table 2-3. Airfield pavement instrumentation. 

Projects Monitoring System Year 

Denver International Airport 

Over 460sensors included strain gages, 

Thermocouples, and Time Domain 

Reflectometers (TDR) were installed 

1990 

FAA National Airport Pavement 

Test Facility (NAPTF) 

Over 1,000 sensors including 

temperature, moisture and strain gages 

were installed 

1997 
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Runway Instrumentation at Denver International Airport 

In the 1990s, the Denver International Airport (DIA) began construction of a runway 

with comprehensive instrumentation of strain gages, thermocouples, and time-domain 

reflectometers (TDR).  A total of 460 sensors were embedded in sixteen slabs of the runway 

to monitor the pavement response generated by aircraft wheel and environmental loading. 

Among the installed sensors were dynamic sensors that could measure strain, vertical 

displacement, airplane speed, and acceleration whenever a passing airplane triggered them. A 

data acquisition system (DAS) was placed in-situ for data collection and downloading to the 

database managed by the FAA technical center (Lee et al., 1997; Dong and Hayhoe, 2000; 

Rufino et al., 2004).  

Federal Aviation Administration (FAA) National Airport Pavement Test Facility (NAPTF) 

 In 1997, the FAA began to build a full-scale pavement test facility dedicated to 

pavement research, as shown in Figure 2-6. NAPTF was built to provide traffic data for 

improving pavement thickness design procedures, investigating pavement response and 

failure mechanisms related to airplane landing, and examining the California bearing ratio 

(CBR) method for asphalt pavement design. Sensors embedded in NAPTF can be divided 

into two groups, static sensors and dynamic sensors. Static sensors were used to monitor 

temperature, moisture, and crack status every hour, while dynamic sensors were used to 

measure strain and deflection under vehicle or aircraft load.  However, many sensors were 

damaged and pavement containing the sensors was scheduled for replacement on an 18-

month cycle (Hayhoe, 2004). 
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Figure 2-6. National Airport Pavement Test Facility (photo courtesy of Federal 

Aviation Administration). 

 

Limitations of Current SHM Practices for Pavement System 

Current SHM practice utilized in pavement systems has mainly used wired sensing 

technologies, resulting in low survivability of sensors with respect to both pavement 

construction and long-term operation. It is difficult to provide either continuously long-term 

monitoring for pavement structural behavior changes or real-time warning for in-service 

pavement failure. Furthermore, wired sensors always require high installation cost and time. 

If many sensors are used the cost of the DAS may also increase due to a limit in the number 

of data-logger connection ports. Current SHM practice also may not directly integrate actual 

Pavement Management Information System (PMIS) to establish Maintenance and 

Rehabilitation (M&R) strategies for in-service pavement systems. Other limitations such as 

lack of easy installation of the SHM system and optimization of the field’s data collection 
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and storage mechanisms may also hamper the implementation of pavement SHM (FHWA, 

2012b). 

Hence, implementation of smart sensors should be investigated as a means for 

overcoming current limitations. Micro-Electromechanical Systems (MEMS) and wireless 

sensor systems are reviewed in the following subsection to evaluate their potential for 

employment in “smart sensor" development.        

                                                                                                                                                                                                                                                                                                                                                                                                                                                    

Micro-Electromechanical Systems 

Overview 

 The emergence of Micro-Electromechanical Systems (MEMS) and their recent 

achievements represent an alternative solution to achieving long-term, continuous, real-time, 

and cost-effective SHM for pavement systems. Micro-Electromechanical Systems (MEMS) 

is a term referring to miniaturized systems consisting of microsensors and actuators 

fabricated by using microfabrication techniques; their critical physical dimensions could 

range from just one micron up to one millimeter (MEMSnet, 2014). This allows use of 

integrated circuits and on-board central processing units to make the system intelligent. As a 

result, microsensors and actuators with active perception and microcircuit control can 

effectively sense their environments and be able to react to changes in those environments 

(Varadan and Varadan, 2000; AllAboutMEMS, 2002; Phares et al., 2005).  

 The early motivation of “small size” sensing devices can be traced back to the first 

point-contact transistor developed in the 1940s by Shockley et al. at Bell Laboratories; it was 

about one-half inch high (SCME, 2013). Since the 1970s, the manufacturing processes of 

electronic devices have undergone remarkable progress associated with the use of silicon as 
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the dominant material. MEMS devices were first developed and widely commercialized in 

the 1990s. Nowadays, MEMS technologies are used in many applications (AllAboutMEMS 

2002; Lee, 2004; SCME, 2013).  

 MEMS-based sensors are generally comprised of miniaturized mechanical-sensing 

elements fabricated on silicon chips. Contemporary microfabrication techniques enable a 

variety of complex electromechanical systems to be integrated into such miniaturized sensing 

elements (MEMSnet, 2014). The most distinguishing features of a typical MEMS sensor are 

incredibly small size and an on-board microprocessor, or CPU. Such a sensor has a much 

lower price due to material used and integrated interconnection. The microprocessor supports 

digital processing, analog-digital conversion, and basic computation. Compared to MEMS 

sensors, traditional sensors have both relatively larger size and higher price and they must 

always be equipped with data management system, so the instrumentation of traditional 

sensors may require a large array density in the structure if many sensors are used, which 

itself may result in pavement distress (e.g. cracking). MEMS sensors, on the other hand, 

could potentially be used to improve current SHM of pavement system performance with 

relatively little concern for inherent compromising properties. 

MEMS Sensors for Civil Infrastructure SHM 

 Current researches related to SHM primarily focus on development of MEMS sensors 

and wireless-sensor systems. Norris et al., (2008) developed a MEMS sensor capable of 

measuring temperature and moisture inside concrete using the microcantilever principle, as 

shown in Figure 2-7. The cantilever beam used in this sensor can generate stresses related to 

concrete moisture. Beam curvature will be produced and the deflection can be measured as 

resistance by an embedded nano-strain gage (resistor) so that the stress can be calculated. 
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Then, based on the established relationship between stress and water concentration, the 

moisture content can be determined. Temperature was measured using an on-chip 

temperature sensor. The fabrication of the MEMS sensor was conducted in accordance using 

a combination of standard and customized semiconductor processing steps. Standard 

complementary metal-oxide-semiconductor (CMOS) procedures, i.e., photolithography and 

chemical wet etching, were used to form the silicon platform. After patterning and activating 

the moisture-sensing element, the cantilever beam was released through plasma etch. The 

sensor die was then surrounded by a polymeric coating and the entire chip embedded in a 

stainless steel jacket to protect it from the enclosing concrete.  

  

Figure 2-7. Manufactured MEMS sensor chip from Norris et al. (2008). 

 Other previous studies on MEMS sensors for concrete monitoring include  “Smart 

Aggregate” by Sackin, et al. (2000), “Smart Pebbles” by Watters (2003), “Smart Dust” by 

Pei et al. (2007, 2009), and “Self-sustaining damage detection sensor” (Kuang, 2014). Table 

2-4 lists MEMS sensors developed through previous research efforts but not all of them can 

be used for concrete pavement. 
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Table 2-4. Research related to MEMS temperature, moisture and strain sensors. 

Sensor Type Applications Reference 

Temperature 

Early age concrete property monitoring Saafi & Romine (2005) 

Monitoring pavement condition using “Smart Dust” Pei et al. (2007) 

Cascaded “Triple-Bent-Beam” MEMS sensor for 

contactless temperature measurements in non-

accessible environments 

Andò et al. (2011) 

Wireless temperature microsensors integrated on 

bearings 
Scott et al. (2011) 

Highly reliable MEMS temperature sensors for 275 

˚c applications 
Scott et al. (2012) 

Multisensor MEMS for temperature, relative 

humidity, and high-g shock monitoring 
Smith (2012) 

MEMS-based Pt film temperature sensor Han et al. (2014) 

Rapid temperature measurement of meteorological 

detection system based on MEMS 
Lu et al. (2014) 

Moisture 

Early age concrete property monitoring Saafi & Romine (2005) 

Monitoring pavement condition using “Smart Dust” Pei et al. (2007) 

A wireless, passive embedded sensor for real-time 

monitoring of water content in civil engineering 

materials 

Ong et al. (2008) 

Multisensor MEMS for temperature, relative 

humidity, and high-g shock monitoring 
Smith (2012) 

A highly sensitive humidity sensor with a novel 

hole array structure using a polyimide sensing layer 
Choi et al. (2014) 

A CMOS humidity sensor for passive RFID 

sensing applications 
Deng et al. (2014) 

Digital hygrometer for trace moisture measurement Islam et al. (2014) 

MEMS-based humidity sensor based on           

thiol-coated gold nanoparticles 
Lin et al. (2014) 

Strain 

Early age concrete property monitoring Saafi & Romine (2005) 

A carbon nanotube strain sensor for SHM Kang et al. (2006) 

Microwave Weigh-In-Motion (WIM) sensor Liu et al. (2007) 

Smart pavement monitoring system Lajnef et al. (2011) 

High-performance piezoresistive MEMS strain 

sensor with low thermal sensitivity 

Mohammed et al. 

(2011) 

Novel MEMS strain sensor 
Saboonchi & Ozevin 

(2012) 

Surface-Bonded MEMS strain sensors  
Moradi &Sivoththaman 

(2013) 

 

Although there has been considerable research focusing on MEMS sensors, the 

majority of studies are still at the proof-of concept level. For MEMS sensors used in 
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pavement SHM, one must consider short-term effects such as high temperature, moisture, 

and alkali environment in fresh concrete, as well as the effect of fine particles from concrete 

compounds. Long-term effects such as freezing-thawing cycles in actual pavement must also 

be considered. 

 

Wireless Sensor Network (WSN)  

Traditional wired sensors generally require high installation costs and time as well as 

avoidance of wire-damage problems. For example, Cho et al. (2008) reported that a 

contractor spent over $5,000 on each wired sensing channel in a high-rise building practicing 

SHM. Furthermore, Hong Kong government spent more than $8 million to install a total of 

350 wired sensing channels in the Tsing Ma Suspension Bridge (Farrar, 2001). In view of 

such examples, economic motivation facilitates the adoption of wireless sensors to replace 

traditional wired sensors. In general, wireless sensor network can utilize Radio Frequency 

(RF), acoustics, infrared transmission, and lasers as transmission media. In terms of SHM, 

RF has mainly been used, and it follows specific topologies and protocols associated with 

signal transmission.  

Wireless Network Topologies 

 A WSN can be represented as a cluster in an SHM system, so the whole system can 

be structured using three common topologies for civil infrastructures: start, peer-to-peer, and 

multi-tier, as shown in Figure 2-8 (Lynch and Loh, 2006). Star topology is designed to allow 

each node (wireless sensor) to communicate only with a designated center server. The 

connection between node and the center server is usually coaxial or fiber optical cable; the 

center server should be capable of data storage and high rate transmission. Peer-to-peer 
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topology is designed so that each node can communicate with any other with no center server 

in the system. This topology leaves sensors free to join or disconnect from the network. In 

other words, it can provide resiliency if a sensor fails or is added. Multi-tier network is a 

topology in which there is more than one central server in the wireless system. In this 

topology, central servers can communicate with one another and each of them can 

communicate with several designated wireless sensors as well (Lynch, 2002; Lewis, 2004; 

Lynch and Loh, 2006; Aygun and Gungor, 2011).  

 

 
 

 

Figure2-8. Wireless network topologies: (a) star; (b) peer-to-peer; (c) multi-tier 

network topologies (Lynch and Loh, 2006). 



www.manaraa.com

23 

Wireless Network Protocols 

 Wireless network protocols are defined to standardize rules, conventions, and data 

structure for networked communication using various wireless devices (Lloret, 2009). Such 

protocols govern how data is packaged, sent, and received in the entire wireless system. In 

general, wireless protocols are mainly based on two Institute of Electrical and Electronics 

Engineers (IEEE) communication standards, IEEE 802.11 and IEEE 802.15.4. These two 

standards for wireless systems generally have been associated with low power consumption, 

high throughput, and reasonable communication range. However, compared to an IEEE 

802.11 device, an IEEE 802.15.4-based wireless system typically has longer battery life and 

greater range. ZigBee is a typical IEEE 802.15.4-based protocol; it will be further discussed 

in Chapter 4 (Al-Khatib et al., 2009; Aygun and Gungor, 2011). 

Passive and Active Sensors: Case of Radio Frequency Identification (RFID) System 

Radio Frequency Identification (RFID) is a wireless identification technology using 

radio waves to identify an object (tag), acquire data, and write data to the tag (Ruan, et al., 

2011). Typically, an RFID system is composed of an RFID tag and an RFID reader. In 

general, RFID can be divided into passive and active sensor systems. Passive RFID needs no 

battery. Instead, its power comes from a wireless signal received and converted by an 

antenna. Conversely, active RFID requires a battery to provide its energy for functioning; 

active RFID is usually more expensive (Bouhouche et al., 2014). Inclusion of the battery will 

lead to larger size and limited lifetime. Active RFID also uses a larger-capacity memory 

module than passive RFID. Additionally, active RIFD usually employs read/write devices 

while passive RIFD uses read tags only. Passive RFID generally has a shorter read range (< 5 

m) and a higher-power reader is therefore required (Roberts, 2006). Moreover, RFID 
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performance could be adversely affected by electromagnetically ‘‘noisy’’ environments 

(Lynch and Loh, 2006; Roberts, 2006). However, even though the term “passive” or “active” 

is mainly used for RFID tags, sensor systems may generally be defined as passive or active 

depending on whether or not they are self-powered. 

Wireless Sensor System Application in SHM of Pavement 

As promising sensing paradigms providing Smart Pavement SHM, wireless sensors 

and sensor networks have been extensively investigated during the 21st century in both 

academic and commercial fields; they represent improvements in installation processes, data 

aggregation, signal analysis, sensor clustering, event localization, time synchronization, 

measurement progress, discrete monitoring, and event-based monitoring as well as in cost 

saving (Krüger et al., 2005). They also reduce the threat of wire damage in concrete.  

Wireless sensor technologies were initially developed and deployed only for military 

and heavy industrial purposes (SILICON LABS, 2014a). Early applications of wireless-

sensor-based SHM in civil infrastructure began with bridges and buildings. Maser et al. 

(1996) built a two-level wireless telemetry system to measure strain and dynamic load-

changing in a highway bridge. The first level of this system contained small transducers 

powered by self-contained batteries that were used to detect rotation, acceleration, and strain 

of the bridge structure. The measured data were first transmitted through a wireless 

transceiver to an on-site data repository and then transmitted via cellular link to a second-

level wireless system at the agency office (Maser et al., 1996). For pavement applications, 

Bennett et al. (1999) in the UK carried out a study assessing performance of wireless sensors 

developed for monitoring strain and temperature in asphalt pavements; this might be the 

earliest wireless-sensor-based pavement-monitoring system. In their study, two strain gages 
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and two thermometers were placed in an instrumented cylindrical core embedded in 

pavement. Data collected from sensors was transmitted to a roadside laptop via a radio 

frequency (RF) wireless link located approximately 4 m from the core.  A success rate test 

conducted before opening to traffic proved that the wireless system had good reliability. 

However, after traffic opening, a decrease in transmission reliability was observed. 

In the latter part of 1990, many researchers began working on wireless-sensor 

platforms for civil infrastructures in which mobile computing and wireless transmission 

components converged with the sensing transducers (Lynch and Loh, 2006). Table 2-5 

provides a summary table of development of wireless sensor platforms and their 

corresponding technical parameters for both commercial and academic fields from 1998 to 

2009, based on the work by Lynch and Loh (2006), Cho et al. (2008), and Aygun and 

Gungor (2011). Among the studies shown in the table, the focus was mainly on developing 

new wireless sensing units, and detailed descriptions of the underlying processes were 

summarized by Lynch and Loh (2006). Through standardization and establishment of the 

IEEE 802.15.4 standard in 2007, researchers began adapting IEEE 802.15.4 standards-based 

devices to traditional sensors to make them “wireless” (Salman et al., 2010). Because of 

these standards, it was unnecessary to develop scratch from all layers of the Open Systems 

Interconnection (OSI) reference model for new systems, and these standards-based 

independently-developed wireless systems could easily communicate with one another as 

well (Nagayama and Spencer, 2007). 
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Table 2-5. Summary table of development of wireless sensor platforms from 1998 to 

2009 (Lynch and Loh, 2006; Cho et al. 2008; Aygun and Gungor, 2011). 

 

As a common wireless technology, RFID was used a great deal in wireless sensor 

systems as well. Lajnef et al. (2013) conducted a study to develop a passive RFID strain-

sensing system for asphalt pavement health monitoring and fatigue damage detection. The 

wireless-sensor system developed in this study was a passive radio-frequency system 

containing a low-power-consumption wireless integrated circuit sensor interfaced with a 

piezoelectric transducer. This piezoelectric ceramic transducer was designed with an array of 

Developer and Year Processor Radio Frequency Availability 

 Straser and Kiremidjian (1998) Motorola 68HC11 Proxim/ProxLink 900 MHz Research 

 Bennett and Hayes-Gill (1999) Hitachi H8/329 Radiometrix 418 MHz Research 

 Lynch et al. (2002) Atmel AVR8515 Proxim RangeLan2 2.4 GHz Research 

 Mitchell et al. (2002) Cygnal 8051 Ericsson Bluetooth 2.4 GHz Research 

 Kottapalli et al. (2003) Microchip PIC16F73 BlueChip RBF915 900 MHz Research 

 Lynch et al. (2003) AV90S8515   Proxim RangeLan2 2.4 GHz Research 

 Aoki et al. (2003) Renesas H8/4069F RealtekRTL-8019AS – Research 

 Basheer et al. (2003) ARM7TDMI Philips Blueberry 2.4 GHz Research 

 Casciati et al. (2004) – Aurel XTR-915 914.5 MHz Research 

 Wang et al. (2004) Analog ADuC832 Linx Technologies 916 MHZ Research 

 Mastroleon et al. (2004) Microchip PIC-micro BlueChip RFB915B 900 MHz Research 

 Ou et al. (2004) Atmega 8L Chipcon CC1000 433 MHz Research 

 Sazonov et al. (2004) MSP 430F1611 Chipcon CC2420 2.4 GHz Research 

 Farrar et al. (2005) Intel Pentium MotorolaneuRFon 2.4 GHz Research 

 Pei et al. (2005) Motorola 68HC11 Max-stream Xstream 2.4 GHz Research 

 Musiani et al. (2007) ATMega128L ChipconCC1100 1 MHz Research 

 Wang et al. (2007) ATMega128 9XCite 900 MHz Research 

 Bocca et al. (2009) MSP430 ChipconCC2420 2.4 GHz Research 

 Zhou et al. (2009) MSP430 ChipconCC2500 2.4 GHz Research 

 Zhu et al. (2009) Atmega128 XStream 2.4 GHz Research 

 Rockwell, Agre et al. (1999) Intel Stron Conexant RDSS9M 916 MHz Commerce 

 US Berkeley- Crossbow (2003) Atmega128L Chipcon CC1000 916 MHz Commerce 

 Intel-iMote2 (2003) ARM7TDMI Wireless BT Zeevo 2.4 GHz Commerce 

 Microstrain, Galbreath et al. (2003) PIC16F877 RF Monolithics  916 MHz Commerce 
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ultra-low power floating gate (FG) computational circuits and could generate enough power 

to supply an FG analog processor for the sensor under stress. Each sensor node distributed in 

the pavement could store the data and then periodically transmit it to a vehicle-mounted 

Radio frequency (RF) reader.  

A wireless-sensor network can also be built by connecting traditional sensors to a 

commercial wireless-transmission node. Xue et al. (2014) designed a sensing network with 

various commercial sensors for pavement-health monitoring. In that 2011 study on Virginia 

State Route 114, the sensors included horizontal and vertical strain gages, load cells, 

thermocouples, and moisture sensors embedded at the bottom of a reconstruction pavement 

section. All embedded sensors were connected to V-Link wireless voltage nodes near the 

pavement through wires of different diameters connected to a wireless data logger to collect 

sensor data and transmit it to a base station via RF. In this system, V-Link nodes had to be 

first interfaced with the sensors using wires. Once data was collected, numerical simulation 

was conducted using the monitored strain-response data through finite-element analysis 

(FEA) based software to compare it with the measured field data. Back-calculation of 

pavement dynamic modulus was also demonstrated in this study using data collected from a 

test vehicle. A Mechanistic-Empirical Pavement Design Guide (MEPDG) based on a fatigue-

cracking and rutting-prediction model was used to estimate the accumulated damage from 

distress; this was intended for use in initiating an early warning of pavement deterioration. 

However, according to their paper, all vertical strain gages failed after five months, probably 

due to harsh environment and excessive load (Xue et al., 2014). 

Wireless sensor networks offer huge benefits for SHM application. There are several 

different ways to build such networks, but using wireless systems for SHM in pavement is 
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still in the study phase and there are still several challenges to be resolved. These challenges 

include noisy wireless environment, limited bandwidth, low signal strength, hardware 

architecture, embedded software, energy consumption, battery life, weather effects on data 

collection, data aggregation, communication hops for large scale structure, etc.  
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CHAPTER 3  

FIELD INSTRUMENTATION AND EVALUATION OF COMMERCIAL OFF-THE-

SHELF MICRO-ELECTROMECHANICAL SYSTEMS (MEMS) SENSORS AND 

WIRELESS SENSORS 

 

 This chapter describes a field demonstration of off-the-shelf MEMS sensors and 

wireless sensor system applications in actual in-service concrete applications. The specific 

objectives of the field demonstration are to    

 Evaluate the performance of commercially available off-the-shelf MEMS sensors and 

wireless sensors   

 Identify current limitations of these MEMS sensors for SHM of pavement 

infrastructure 

 Demonstrate how sensing data can be utilized to monitor concrete pavement behavior   

 

Description of Site 

In summer 2013, new jointed plain concrete pavement (JPCP) construction projects 

were carried out in US Highway 30 under the supervision of the Iowa Department of 

Transportation (Iowa DOT). The project site was located near the southeast area of Ames, 

IA, as shown in Figure 3-1. To evaluate the performance of the off-the shelf MEMS sensors 

used for concrete pavement health monitoring, one section from this newly constructed 

highway pavement was selected for instrumentation to identify requirements for a smart 

sensing system to advance SHM application for concrete pavement systems.  
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Figure 3-1. US-30 highway project location. (Source from Map data @2013 Google). 

 

Figure 3-2 illustrates the concrete pavement construction plan of this project. The 

newly-constructed pavement section was approximately 10 inches in thickness and 

constructed above a granular subbase with thickness ranging from 6 to 10.3 in. The PCC 

pavement was crowned with a 2.0% transverse slope and had widths of 12 ft. and 14 ft. for 

passing lane and travel lane, respectively. The transverse-joint spacing was set at 20 ft., 

reflecting general practice in Iowa. Dowel bars with baskets were placed on the subbase 

before concrete paving. 

 

Figure 3-2. US-30 highway construction plan. 
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Installation of sensors was conducted on May 23, 2013, one day before concrete 

paving in US Highway 30 at 8:00 am on May 24, 2013. A slipform paver moved from west 

to east to pour fresh concrete on the subbase. A viborator followed the paver to consolidate 

the fresh concrete using viboration tubes. Surface smoothing was performed manually. A 

slipform paver dragging a piece of burlap was used to create texture for the pavement surface 

and a chemical curing compound sprayed on the paving surface. Shoulder backfilling was 

conducted approximately 14 days after concrete paving; a 6-in thick Hot-Mix Asphalt (HMA) 

shoulder was then placed on June 10, 3 days after shoulder backfilling. One day later, 

granular shoulder was added to the pavement. The constructed pavement was opened to 

traffic on June 14, 2013. Table 3-1 lists details of the construction timeline. 

Table 3-1. US-30 highway construction timeline. 

Timeline 

Date Activities 

May 23, 2013 Sensor installation 

May 24, 2013 Concrete paving 

June 7, 2013 Backfilling for shoulder 

June 10, 2013 HMA shoulder paving 

June 11, 2013 Granular shoulder paving 

June 14, 2013 Opened to traffic 

 

Description of Sensors 

 Temperature and moisture are vital factors contributing to concrete properties such as 

strength and durability. Low temperature and rapid loss of moisture can result in insufficient 

development of strength, and different temperature and moisture gradients in concrete can 
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contribute to curling and warping behaviors that may result in cracks if the induced stress 

exceeds the concrete strength. A total of 30 sensors, including off-the-shelf MEMS based 

temperature and moisture sensors and strain gages, were evaluated in this study. The sensors 

used were Radio-Frequency Identification (RFID) temperature tags, Sensirion digital 

humidity sensors SHT71, Thermochron iButtons, and Geokon model 4200 strain gages. A 

detailed description of each type of sensor is presented in the following sections. 

Radio-Frequency Identification (RFID) Temperature Tag 

 The wireless RFID tags from the HardTrack Concrete Monitoring System, WAKE, 

Inc. were selected for temperature monitoring due to their low cost, extensive communication 

range, durability in concrete and low power consumption. This active wireless RFID tag is a 

MEMS-based temperature sensor with advanced UHF RF technology that can provide real-

time data collection and storage. This RFID system consists of a RFID transponder called “i-

Q32T” and a portable handheld transceiver called “Pro”, which are shown in Figures 3-3 and 

3-4 (IDENTEC SOLUTIONS, 2008; WAKE, Inc., 2010). Figure 3-3 shows that the tag 

contains an internal temperature logger to capture the temperature of concrete at definable 

intervals, and a battery for power (IDENTEC SOLUTIONS, 2008). The antenna inside this 

tag enables the Pro to identify the tag to read/extract data or to change the time interval. In 

this study, temperature readings were taken every 30 minutes. By communicating with the 

portable Pro, the collected temperature data could be imported into this handheld transceiver 

for data-saving and concrete-maturity calculation using a PCC maturity concept. 

Consequently, this RFID tag was applicable to concrete-temperature monitoring, and its 

excellent accuracy exceeded that of the ASTM C1074-93 requirement. This tag had a 

claimed capability of transmitting and receiving data within distances of up to 100 feet (30 
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meters) from the handheld device or up to 300 feet (100 meters) from a fixed interrogator; its 

operational life could be greater than 6 years due to its low power consumption (IDENTEC 

SOLUTIONS, 2008).  

 

Figure 3-3. i-Q32T wireless RFID transponder (photo courtesy of WAKE, Inc.). 

 

 

Figure 3-4. HardTrack portable handheld transceiver Pro (photo courtesy of WAKE, 

Inc.). 

 

 Figure 3-5 illustrates the whole RFID system, including the portable handheld 

transceiver Pro. In this system, the i-Q32T RFID tag can be divided into an  “embedded 
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probe” and an “extended probe”. The embedded probe was the tag the temperature logger 

installed inside of  the i-Q32T tag, but when making deep pours the RFID tag could be 

equipped with a stainless steel temperature probe, referred to as an “extended probe” in this 

thesis, to enable it to penetrate deeper into large concrete structures. RFID extended probes 

are typically used in large-scale structures like dams to measure the temperature of concrete 

several feet below the concrete surface, but the i-Q32T tag with an antenna can still be placed 

at the surface to transmit data. The biggest advantage of the “extended probe” was that it 

could be removed from the tag so the tag could be recycled if there was no need to use the 

extended probe. Both embedded probe and extended probe are shown in Figure 3-5.  

 

Figure 3-5. RFID tag and portable Pro. 

 

MEMS Digital Humidity Sensor 

 The Sensirion digital humidity sensor SHT71 evaluated in this study was classified as 

a commercial multifunctional off-the-shelf MEMS sensor that could simultaneously measure 

Relative Humidity (RH) and temperature. Figure 3-6 (a) and (b) show pictures of the MEMS 
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digital humidity sensor and the evaluation kit, respectively. The commercial MEMS digital 

humidity sensor, developed by Sensirion, Inc., is a kind of metal pin-based sensor integrating 

both the sensing elements and signal processing circuitry on a silicon chip to provide a fully-

calibrated digital output. In this sensor, a unique capacitive sensing element consisting of 

paired conductors was used to capture RH while another band-gap sensor measured 

temperature. The paired conductors were separated by a dielectric, a kind of polymer to 

absorb or release water proportionally with the relative environmental humidity. The 

capacitance change was measured by an electronic circuit to calculate RH (Sensirion, Inc., 

2014). To simultaneously protect the sensor from interference, a "micro-machined" finger 

electrode system with different polymer-covered layers was used to produce the capacitance 

for this MEMS sensor.  

 The MEMS digital humidity sensors must be connected with evaluation kit EK-H4 

(Figure 3-6 (b)) at all times to continuously monitor temperature and RH. Moreover, it is 

should also be pointed out that this evaluation kit does not have memory, so a laptop with 

related software must be connected at all times to store the measurements. Time intervals 

could be set through the laptop; in this study measurements were performed at one-minute 

intervals. 

                                
                                                (a)                                           (b) 

Figure 3-6. Sensirion sensor system: (a) Sensirion SHT71 sensor; (b) evaluation kit. 
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Thermochron iButton 

 The Thermochron iButton from Maxim Integrated Products, Inc. is designed for 

temperature measurement and storage. This low-cost and reliable temperature sensor is 

equipped with a wide-temperature-range thermometer (14 to 185˚F) and has a protected 

memory section. It is able to record time and temperature at user-defined intervals of up to 

255 minutes, and total of 2048 temperature readings can be stored (Maxim Integrated, 2014). 

Therefore, the monitoring period could be extended to 340 days based on the maximum 

measurement interval if the internal battery could guarantee a minimum of 2 years’ working 

time at room temperature. Furthermore, this iButton sensor is protected by a durable stainless 

steel shield with plastic cover to ensure that it is working properly in the concrete 

environment. 

 The main advantages of the iButton temperature sensor are large memory, long 

battery life, rugged packaging, and low cost. iButtons have been used in field projects for 

temperature monitoring of fresh concrete during construction. For example, the Texas 

Department of Transportation conducted a demonstration project in 1999 using a large 

number of iButtons; Des Moines International Airport utilized iButtons to monitor the 

temperature history of fresh concrete (Tully, 2007). Figure 3-7 is a picture of an iButton. It 

can be seen that the iButton requires a USB cable for data downloading. Unlike the MEMS 

digital humidity sensor, the iButton doesn’t require constant connection with the laptop 

because it has its own memory system. In this study, iButtons were used as reference sensors 

to measure internal temperature of concrete at 30-minute measuring intervals. 
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Figure 3-7. Thermochron iButtons and USB cable. 

Strain Gage 

 The strain gage evaluated in this project was the Model 4200 Vibrating Wire 

Embedment Strain Gage manufactured by Geokon, Inc., and shown in Figure 3-8. This is a 6 

in. long static strain sensor designed for direct embedment in concrete; it makes 

measurements based on a vibrating-wire principle (See Figure 3-9). When the gage is 

embedded in concrete, strain changes will cause the two metal blocks to move relative to one 

another, and the resulting tension generated in the steel wire can be determined by plucking 

the wire and measuring its resonant frequency of vibration (Geokon, Inc., 2014).  

 The advantages of the Model 4200 Vibrating Wire Embedment Strain Gage claimed 

by its manufacturer include excellent long-term stability, maximum resistance to effects of 

water, and a frequency output suitable for transmission over very long cables. Use of 

stainless steel ensures that it is waterproof and corrosion-free, but strain measurement is 

affected by temperature, so the model 4200 strain gage incorporates an internal thermistor for 

simultaneous measurement of temperature. 
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Figure 3-8. Geokon model 4200 strain gage (Geokon, Inc., 2014). 

 

 

Figure 3-9. Model 4200 Vibrating Wire Strain Gage (Geoko, Inc., 2014). 

 

Figure 3-10 shows a picture of the entire strain measurement system including the 

Geokon model 8002 data-logger used for data collection. This data-logger can be 

conveniently powered either by widely available alkaline D cells, or by an external 12 V 

source. It has an operating time ranging from 8 days to 2 years, depending on the scan 

interval. However, in this study the strain reading was recorded every minute so the 

estimated operational time was about two and one-half days. 
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Figure 3-10. Datalogger and Model 4200 strain gage. 

 

Installation of Sensors 

 The instrumented pavement section was located in the driving lane of US Highway 

30. A total of 30 sensors, including 14 RFID temperature tags (9 extended probes and 5 

embedded probes), 4 MEMS digital humidity sensors, 5 iButtons, and 7 longitudinal strain 

gages were installed at different locations throughout at various concrete pavement depths 

and placed near to DAS for ambient temperature monitoring.  

Location of Sensors 

In general, concrete pavement edges and corners will suffer more from load than 

other positions (Darestani, 2007), so the locations selected in this project were the corners 

and mid-panels of the slab. Figure 3-11 (a) and (b) show the detailed instrumented plan of 

this slab. Referring to these two figures, there were five cross-sections (section A-A through 

E-E) totally instrumented with these sensors. The distances from each section to the shoulder 

were all different. Among these cross sections, section A-A, 44 in. away from the HMA 
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shoulder, was instrumented at mid-span using 4 RFID embedded probes, 4 iButtons, and 2 

strain gages. The RFID tags were installed at distances of 3, 5, 6, and 7.5 inch below the 

pavement surface, and iButtons were installed at distances of 4, 5, 8.5, and 10 inches below 

the surface, respectively. Strain gages were embedded only at the top and bottom positions, 2 

and 8.5 in. away from the pavement surface. Section B-B, located at the joint between two 

adjacent slabs, was 40 in. away from the HMA shoulder. It was instrumented using only one 

strain gage under a dowel bar, as shown in Figure 3-12. Section C-C was 28 in. away from 

the shoulder. It was instrumented using 8 RFID extended probes and 3 MEMS digital 

humidity sensors. Among these embedded RFID tags, 5 RFID extended probes were 

embedded in the corner at distances of 2, 4, 6, 8, and 10 inches below the surface and 3 RFID 

extended probes were embedded in the mid-span at distances of 2, 5.5, and 8.5 inches below 

the pavement surface. With regard to the 3 MEMS digital humidity sensors, they were 

embedded at the same locations where the 3 RFID extended probes were installed. Section 

D-D, located 20 in. away from the HMA shoulder, was instrumented by strain gages only. In 

this section, 2 strain gages were embedded at the top and bottom in the corner at 2 and 9 

inches below the surface. Another pair of strain gages was embedded at the top and bottom in 

the center, 2 and 9 inches, respectively, below the surface. The last section, E-E, was 8 in. 

away from the shoulder and was instrumented using only one MEMS digital humidity sensor, 

located just 0.1 in. below the surface at the mid-span. 
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 (a)  

 
(b) 

Figure 3-11. Sensor instrumentation plan: (a) top view; (b) cross-section view. 
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Figure 3-12. Installation of strain gage at joint. 

 

Processes of Installation 

 All sensors were pre-installed one day before concrete paving, with installation of 

sensors beginning in the subbase on the morning of May 23, 2013. Prior to installation of 

sensors, wooden bars were first inserted in the subbase in accordance with the previous 

installation plan. The length of these wooden bars above the subbase surface was 

approximately 10 in., almost equalling the thickness of PCC slab. In the next step, all sensors 

were mounted to these wooden bars using zip-ties to fix their positions during pavement 

construction, as shown in Figures 3-13 (a) and (b). 
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 (a)  

 
(b) 

Figure 3-13. Installation of sensors: (a) near slab corner; (b) near mid-span edge. 

 

 As shown in the above two figures, two wooden bars were used to fix the location of 

strain gages and RFID tags. While a wooden bar would not cause any issues related to 
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thermal conductivity that might may affect strain and temperature measurement, it should be 

pointed out that the strain gages and the RFID tags were placed in alignment with traffic 

direction, the same as the direction of concrete paving. Additionally, iButtons and MEMS 

digital humidity sensors were mounted on the back of the wooden bars to reduce the direct 

force of concrete paving. All these strategies were applied to help sensors survive during 

paving construction. 

 It should be noted that, during installation of sensors, wires from sensors needed extra 

attention because there was no way to repair them once inside the concrete if they are broken 

or have loose connection issues. In this project, all the sensors deployed in US Highway 30 

were wired sensors except for RFID tags; even the RFID extended probe had a long cable 

between the temperature probe and the “i-Q32T” tag. To protect these wires, all were spliced 

and soldered to create connections and then placed in a polyvinyl chloride (PVC) pipe, as 

shown in Figure 3-14. The PVC pipes were then placed in a ditch dug in advance and then 

wires were connected to the Data Acquisition System, as shown in Figure 3-15. 

 

Figure 3-14. Wires in PVC pipe. 
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Figure 3-15. PVC pipe in ditch with wires. 

Data Acquisition System (DAS) 

Figure 3-16 shows the on-site DAS of the sensors used in US-30 highway. It can be 

seen that both the DAS and the batteries were stored in a plastic shield box. The laptop was 

used to collect data from MEMS digital humidity sensors, and the rechargable batteries were 

used to supply power to the laptop only.  The box located approximately 14 ft. away from the 

HMA shoulder was covered by an orange protective blanket.  All devices were placed on a 

wooden board supported by two concrete caps and a plastic bag was used to protect them 

from rain. These protective strategies were used to protect the DAS from animals, rain, wind, 

etc., because it was important to keep the DAS away from external disturbances. 

Additionally, ambient RFID tags (both extended probes and embeded probes) and iButtons 

were placed beside the shield box to capture ambient temperature conditions, as shown in 

Figure 3-17. 



www.manaraa.com

46 

 Among the sensors deployed in the US Highway30 project, only RFID tags and 

iButtons were quipped with internal batteries. MEMS digital humidity sensors and strain 

gages, as well as the DAS, required batteries to make them function during the monitoring 

period. However, the batteries could provide only 3 days’ power for the laptop, so data 

acquisition and battery replacement were scheduled every two days to achieve continuous 

data collection during the initial stages up until June 28, 2013. However, these procedures 

were time and labor-consuming, so different times were scheduled for summer and winter 

data-acquistion times late due to traffic and environmental conditions.  

 

Figure 3-16. Data Acquisition System (DAS). 
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Figure 3-17. Ambient sensors. 

 

Concrete Paving 

Concrete paving for the instrumented pavement section started at 7:45 am on May 24, 

2013. Before concrete paving, dowel bars with baskets were placed above the subbase. The 

average water/cement ratio for the concrete ranged from 0.4 to 0.43. The time of initial and 

final set were determined at 4.84 and 7.17 hours, respectively, in acordance with ASTM C 

403, attached as Appendix C. During road construction, both a paver and a vibrator were 

used. A huge amount of fresh concrete first poured on the subbase was spread out by the 

passing paver, as shown in Figure 3-18. A vibrator with vibration tubes followed the paver to 

produce consolidated concrete. The vibrator leveled off the concrete as it passed through and 

the workers behind the vibrator then smoothed the surface. Finally, the surface was textured 

by dragging a piece of burlap in the longitudinal  direction. Water was sprayed onto the 
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pavement surface after texturing, followed by spraying of chemical components for curing 

purposes.  

 

Figure 3-18. Concrete paving. 

 

 However, both paver and vibrator were sources of potential threat of sensor damage 

due to their auger and vibration forces that might break either the sensors or the wires during 

pavement construction. Moveover, dropping a heavy mass of concrete could crush the 

sensors and tear up the wires. Therefore, to protect the sensors as much as possible, fresh 

concrete was carefully pre-poured on the top of sensors to mitigate the force from the paver, 

vibrator, and dropped concrete, as shown in Figures 3-19 (a) and (b). Then, after concrete 

paving, a MEMS digital humidity sensor was embedded 0.1 in. below the pavement surface 

at cross section E-E, as shown in Figure 3-20.  
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(a) 

 
(b) 

Figure 3-19. Sensor protection during road construction: (a) obtain fresh concrete from 

paver; (b) pour concrete on the sensors. 
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Figure 3-20. Embedment of MEMS digital humidity sensors. 

 The temperature probes of RFID tags (extended probes) were mounted on wooden 

bars, and the i-Q32T tags (transponder) were placed in a protective wooden box beside the 

concrete slab, as shown in Figure 3-21. This box was used to protect the tags during shoulder 

construction as shown in Figures 3-22 (a) and (b). As a result, data measured inside the 

concrete could be successfully transmitted from the transponders in the box. Figure 3-23 

shows the traffic opening on June 14, 2013, and the protective wooden box for RFID tags can 

be seen at the bottom of the picture. 

 

Figure 3-21. RFID extended probe in wooden box. 
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(a) 

 
(b) 

Figure 3-22. Shoulder construction: (a) backfilling; (b) HMA shoulder paving. 
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Figure 3-23. Traffic opening. 

 

Sensor Performance Evaluation 

 JPCP behavior before traffic opening was mainly affected by environmental 

conditions. The monitored concrete properties for the test section on US Highway 30 were 

temperature, moisture, and strain. This section mainly provides detailed descriptions of both 

quantity and quality evaluation of sensor performance. Furthermore, concrete pavement 

behavior (curling and warping) associated with the monitored concrete properties is 

discussed. 

Temperature and Moisture 

 In concrete pavement, knowledge of temperature profile is essential for stress 

analysis. Different temperature gradients throughout the entire concrete depth and 

excessively high ambient temperatures such as from heat waves can result in structural 

failure. In this study, temperature measurements were mainly captured by RFID tags, MEMS 

digital humidity sensors, and iButtons embedded throughout entire depth of the PCC 

pavement. The measurements from iButtons were used as reference temperatures to be 

compared with the other two types of temperature sensors.  
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 Moisture content plays a significant role in cement hydration because it may not 

proceed properly under low-moisture conditions. Moisture-gradient changes inside concrete, 

just like temperature gradients, can lead to concrete deformation. Moisture-content 

distribution is also crucial in evaluating the severity of shrinkage during setting and 

hardening processes. However, moisture content measured in concrete is usually represented 

by humidity level. Moisture typically means amount of water present in a material, but 

humidity is the amount of water vapor present in air or gas and can be represented as either 

absolute humidity or relative humidity (Das, 2009; Ye et al., 2006). Absolute humidity is the 

ratio of the mass of water vapor to the volume of air or gas, while relative humidity (RH) 

refers to the percent of the water content in air compared to the saturated moisture level at the 

same temperature and pressure (Ye et al., 2006). 

Monitoring Period Overview 

 The entire monitoring period extended from May 24, 2013 to April 1, 2014, 

approximately 10 months after traffic opening. However, to obtain continuous data, data 

acquisition had to be scheduled every two days, which was an unrealistic requirement over 

the entire 10 months due to the remote location of the DAS, the harsh climate, and the 

limited labor force. As a result, the longest continuously-monitored period actually used is 

described and discussed in this section. 

RFID Tag (Extended Probe) 

Figures 3-24 (a) and (b) illustrate the temperature profiles captured by RFID extended 

probes at slab corner and center, 28 in. away from HMA shoulder. Probes No. 1 through 5 

were 2, 4, 6, 8, and 10 in., respectively, below the pavement surface, and probe No.9 was an 

ambient temperature sensor. Probes No. 6 through 8 were located 2, 5.5, and 8.5 in., 
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respectively, below the surface. As seen in Figure 3-24, a maximum temperature of 111 ˚F 

and a minimum temperature of 0 ˚F were observed during May through April in 2014. The 

average temperature rose to about 80 ˚F in summer and rapidly went down to about 20 ˚F in 

winter.  Furthermore, fewer and fewer sensors remained functional as time passed; the 

sensors embedded in the center were not functional after December, 2013.           

 
(a) 

 
(b) 

Figure 3-24. RFID extended probe measurement: (a) in the corner; (b) in the center. 
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RFID Tag (Embedded Probe) 

 Figure 3-25 illustrates the temperature profile captured by RFID embedded probes in 

mid-span 44 in. away from the shoulder. RIFD extended probes No.10 through 13 were 

embedded 3, 5, 6 and 7.5 in. below pavement surface and probe No.14 was an ambient 

temperature sensor. From Figure 3-25, the temperature ranged from 20 to 108 ˚F before 

December 6, 2013, similar to the temperature captured by RFID extended probes embedded 

in the center. However, fewer and fewer RFID-embedded probes remained functional as time 

passed and no embedded probes were functional after December 7. Note that the ambient 

temperature probe No. 14 was removed on July 19, 2013. Furthermore, based on observation, 

it was found that the temperature difference between top concrete and bottom concrete was in 

the range from 4 ˚F to 12 ˚F. 

 

Figure 3-25. RFID embedded probe measurement in the mid-span. 
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MEMS Digital Humidity Sensor 

 Four MEMS digital humidity sensors were embedded in US Highway 30. MEMS 

digital humidity sensors No. 1 through 3 were embedded 8.5, 5.5, and 2 in. below the 

pavement surface and No. 4 was just 0.1 in. below the pavement surface. However, sensors 

No. 1 and 2 were unable to collect data within just a few hours after concrete paving. This 

could probably be attributed to wire damage or loose connections incurred by the concrete 

paver, the vibrator, or the high-alkali environment prevailing during concrete hydration. Note 

also that data could not be acquired in the period May 26 through 28, 2013 because the 

battery (power supply) for the DAS was not recharged. Figures 3-26 and 3-27 give the 

temperature and RH profiles captured by the MEMS digital humidity sensors. 

 

Figure 3-26. Temperature measurement of MEMS digital humidity sensors.  
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Figure 3-27. RH measurement of MEMS digital humidity sensor. 

 According to Figure 3-26, the temperature before June 29 ranged from 60 to 120 ˚F. 

It can also be seen that sensor No. 4 in its initial stage reflected higher temperature in 

daytime and lower temperature at night. This is because sensor No. 4 was closer to the 

pavement surface so it would be more easily affected by ambient environment such as solar 

radiation. Meanwhile, temperature at the pavement top would drop more rapidly than that at 

the bottom. However, in later stages, sensor No. 4 also exhibited a higher temperature at 

night; this was probably due to a heat wave reported in June 2013. According to Figure 3-27, 

the RH was about 67% in the beginning followed by a sharp increase in RH from 63% to 

78% observed on June 3, 2013, and due to a serious thunderstorm occurring on June 3 and 4, 

2013. Following that, the RH value fluctuated between 70% and 80% most of the time. 

iButton 

 Figure 3-28 illustrates temperature measurements taken from the iButton between 

May 24 and August 22, 2013. iButtons No. 1 to 4 were embedded 4, 5, 8.4, and 10 in. below 
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pavement surface, and iButton No. 5 was an ambient temperature sensor. Among these 

sensors, only one iButton (No. 4) stopped functioning (on July 18, 2013). It can be seen that 

the temperature range measured by iButtons ranged from 47 to 105 ˚F, lower than the values 

captured by the RFID tags. This was because the highest temperature was captured by 

iButtons No. 1 and 2 installed at the midpoint of the pavement depth, so their readings were 

lower than the values captured by the RFID tags and the MEMS digital humidity sensors 

located near the top of pavement. However, comparing ambient temperature measurements, 

the ambient RFID extended probe and the embedded probe had the same reading, 

approximately 2 ˚F higher than the ambient iButton’s measurement. 

 

Figure 3-28. Temperature measurement from iButtons.                                                                                             
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strain gages No. 6 and 7 were embedded 2 and 9 in. below the pavement surface at the mid-

span edge. The other strain gages, No. 1, 2, and 4, stopped functioning immediately, 

probably due to wire issues. In Figure 3-29, positive and negative microstrain represented 

tension and compression, respectively. However, after opening to traffic, the strain readings 

were greatly affected by the traffic load. The strain behavior after traffic activity began was 

not in the research scope and therefore not discussed in this section. A detailed description of 

strain behavior before traffic opening is provided in the next section.  

 

Figure 3-29. Strain measurement. 
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environmental effects from temperature and moisture could be analyzed for this period.  

Figures 3-30 through 3-34 illustrate temperature, RH, and strain captured by the sensors. 

 
(a) 

 
(b) 

Figure 3-30. Measurement of RFID extended probes before traffic opening: (a) in the 

corner; (b) in the center. 
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Figure 3-31. Measurement of RFID embedded probes before traffic opening. 

 

Figure 3-32. Measurement of iButtons before traffic opening. 
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(a) 

 
(b) 

Figure 3-33. MEMS digital humidity sensor measurement before traffic opening: (a) 

temperature measurement; (b) RH measurement. 
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(g) 

Figure 3-34. Strain profile before traffic opening. 
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because it took more time for deeper concrete to reach its peak temperature caused by 

ambient temperature change. 

 RH measurement exhibited a trend similar to temperature, i.e., RH went up while 

temperature increased according to Figures 3-33. At the beginning of concrete paving, RH 

built up rapidly and then the value was maintained at between 65 to 70% until a thunderstorm 

on June 3, 2013 caused a sharp increase in RH. After that, RH reached 78% and then 

fluctuated between 75 and 80%. However, only one moisture sensor remained operational so 

the RH profile at various depths could not be developed. However, RH generally increased 

when pavement depth increased (Asbahan, 2009). 

 Figure 3-34 illustrates strain captured by strain gages before traffic opening. It was 

found that the strain value was mainly in the range of -200 to +200 microstrain except for 

strain gage No. 5 that may have suffered from disturbance problems. The value captured was 

similar to that in the research study by Wells (2005), Asbahan (2009), Qin (2011), and 

Nassiri (2011) who found typical strain values in response to environmental loads in a range 

from -150 to +150 microstrain. However, according to Figure 3-34, the curve patterns of 

strain gages No. 3, 5, and 7 agreed but were totally opposite to those of strain gage No. 8 

because the deformation behavior of pavement was different under environmental load 

between the bottom and the top sections. In the instrumented section, strain gages No. 3, 5, 

and 7 were at the bottom and strain gage No. 6 was at the top. When tension was induced at 

the top (strain gage No. 6), compression was induced at the bottom. This phenomenon is 

referred to as curling and warping behavior of concrete and is explained in the following 

paragraphs. However, strain gage No. 5 exhibited a noisy signal but could still provide clear 

curve pattern. 
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Curling and Warping 

 Curling and warping are common concrete behaviors that have been extensively 

investigated. In general, conventional concrete pavement deteriorates under the influence of 

repeated traffic and environmental load. In terms of environmental load, two well-known 

factors, temperature and moisture, produce significant effects called curling and warping.  

Curling and warping stresses are developed as a result of temperature and moisture gradients. 

When non-uniform temperature or moisture gradient is induced in a PCC slab, the 

differential strain response throughout the slab depth will lead to curvature. Generally, when 

the top of the PCC slab has higher temperature or moisture content, a positive gradient will 

be induced and the top part of the PCC slab will expand more than the bottom, resulting in 

downward slab curling or warping. Conversely, if the bottom of the PCC slab has higher 

temperature or moisture content than the top, a negative gradient will occur and the bottom 

part of the slab will expand more than top, resulting in upward curling or warping of the slab. 

 The curling and warping behavior of a PCC slab may influence the degree of support 

offered by the subgrade and the stiffness along the joint. When curling and warping occurs in 

the PCC slab, the self-weight of the slab tends to exert tensile stresses resisting the 

deformation caused by the curvature, as shown in Figure 3-35. Additionally, internal tensile 

stresses in a PCC slab can be developed by restraints to deformation such as dowel bars and 

friction between the PCC slab and the base course (Wells, 2005). The induced tensile stresses 

will be further magnified under repetitive vehicle loading and can easily lead to transverse 

cracking. In addition to temperature and moisture gradients in a PCC slab, curling and 

warping behavior of early-age concrete is also affected by early-age curing and temperature 

conditions during pavement construction and by other factors like solar radiation, base-layer 
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type, slab geometry, degree of built-in slab curvature, concrete mixture, dry shrinkage, and 

creep (Ceylan, 2013). To minimize effects of slab curling and warping, the concrete 

placement time should be adjusted to avoid weather conditions that may lead to development 

of built-in temperature gradients. A good curing method, including covering the entire 

concrete surface, should also be used. Like curling and warping behavior of a PCC slab, 

contraction and expansion behavior in response to temperature and moisture is also related to 

cracks in the slab. However, curling and warping are more complicated phenomena than 

contraction and expansion because they involve variations and non-uniform volume change 

at different slab depths and locations. Compared to curling and warping, contraction and 

expansion behavior of concrete mainly involves horizontal volume change of the PCC slab 

and this is more related to joint spacing design.  

 
(a) 

 
(b) 

Figure 3-35. Stresses exerted due to curling and warping: (a) tensile stresses exerted at 

top in PCC slab with upward curvature; (b) tensile stresses exerted at bottom in PCC 

slab with downward curvature (Nassiri, 2011). 
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 In summary, curling and warping are developed as a result of induced non-uniform 

temperature or moisture gradients that generate differential strain responses throughout the 

slab depth, leading to slab curvature. In this study, curling and warping are illustrated in 

Figure 3-36, shown below. According to Figure 3-36, when concrete curled up, the top 

concrete (strain gage No. 6) had a maximum of 200 tensile microstrain at 2:00 am on June 8, 

2013. Meanwhile, the bottom concrete (strain gage No. 3) had a maximum of 200 

compressive microstrain. Comparing with temperature measurements previously shown in 

Figure 3-30 through 3-33, it can be observed that top concrete had an approximate 

temperature of 60 ˚F while that of bottom concrete was 65 ˚F. As a result, top concrete was 

cooler than bottom so that slab curled up, in agreement with the strain readings of Figure 3-

36.  

 

Figure 3-36. Strain measurement: curling and warping. 
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Two Months after Traffic Opening (June 2013 to July 2013) 

 Figures 3-37 through 4-42 illustrate the temperature and RH behavior approximately 

two months after traffic opening, i.e., from July 25 through 27, 2013. According to these 

figures, it was discovered that an additional 26% of sensors were not functional at the end of 

July 27, 2013. These sensors were RFID extended probes No. 1, 4, and 6, embedded probes 

No. 10 and 12, iButton No. 4, MEMS digital humidity sensor No. 3, and strain gage No. 5. 

Furthermore, these sensors were distributed in everywhere throughout the slab so there was 

no “concentrated location” where the sensors stopped functioning. 

 

Figure 3-37. Measurement of RFID extended probes in the corner at two months after 

traffic opening. 
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Figure 3-38. Measurement of RFID extended probes in the center at two months after 

traffic opening. 

 

Figure 3-39. Measurement of RFID embedded probes at two months after traffic 

opening. 
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Figure 3-40. Measurement of iButtons at two months after traffic opening. 

 

Figure 3-41. Temperature measurement of MEMS digital humidity sensor at two 

months after traffic opening. 
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Figure 3-42. RH measurement of MEMS digital humidity sensor at two months after 

traffic opening. 

 

 Figure 3-37 through 3-40 show that the average temperature mainly was in a range 

from 74 to 94 ˚F. According to Figure 3-41, the MEMS digital humidity sensor exhibited a 

higher temperature than other sensors, ranging from 80 to 110 ˚F, probably due to strong 

solar radiation at noon because the MEMS digital humidity sensor was just 0.1 in. below 

pavement surface. Furthermore, it’s obvious that the ambient temperature was lower than that 

of concrete, and it reached its peak earlier as well, as previously discussed.    

Six Months after Traffic Opening (December 2013) 

 

 Figures 3-43 through 3-46 illustrate temperature and RH measurements in winter. By 

the end of December 6, 2013, RFID extended probes No. 5, 7, 8, and 9 and RFID embedded 

probes No. 13 had stopped functioning. According to these figures, the MEMS digital 

humidity sensor also reported a temperature more than 50 ˚F higher than the RFID tags and 

the iButton that reported maximum temperatures of approximately 40 ˚F. The RH value in 
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winter was maintained between 80 and 90% and that sensor followed a similar temperature 

pattern. 

 
(a) 

 
(b) 

Figure 3-43. Measurement of RFID extended probes at six months after traffic opening: 

(a) in the corner; (b) in the center. 
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Figure 3-44. Measurement of iButtons at six months after traffic opening. 

 

Figure 3-45. Temperature measurement of MEMS digital humidity sensor at six 

months after traffic opening 
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Figure 3-46. RH measurement of MEMS digital humidity sensor at six months after 

traffic opening. 

 

Concrete Maturity   

Laboratory Tests 

 During concrete construction, a total of 72 cylinders (4 in. ×8 in.) were collected from 

the project site, and 63 of these were used in laboratory concrete tests, including a 

compressive strength test, a split tensile strength test, an elastic modulus test, and a 

coefficient of thermal expansion (CTE) test. Table 3-2 and Figures 3-47 through 3-50, 

respectively, illustrate the detailed test plan and the test results.  

Table 3-2. Concrete testing plan summary. 

Type of Test Age Repeatability Standards 

Compressive Strength 1, 3, 7, 14, 28, and 90 days 3 ASTM C39 

Split Tensile Strength 1, 3, 7, 14,28,  and 90 days 3 ASTM C496 

Elastic Modulus 1, 3, 7, 14, 28, and 90 days 3 ASTM C469 

CTE  7, 28, and 56 days 3 AASHTO T336-11 
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Figure 3-47. Compressive strength test results 

 

Figure 3-48. Split tensile strength test results. 
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Figure 3-49. Modulus of elasticity test results. 

 

Figure 3-50. Coefficient of thermal expansion test results. 

 

 

 

0

1,000

2,000

3,000

4,000

5,000

6,000

0 500 1,000 1,500 2,000 2,500

M
od

ul
us

 o
f E

la
st

ic
it

y 
(k

si
)

Time (hours)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

7 28 56

CT
E,

 m
ic

ro
-s

tr
ai

n/
de

gr
ee

 F

Time, days



www.manaraa.com

77 

 Figure 3-47 through 3-50 illustrate the results of common laboratory concrete tests 

conducted in accordance with corresponding related standards. It can be seen that the 

strength increased rapidly during an initial period of 7 days after which the speed of strength 

increase became slower. However, a slight decrease in split tensile strength and modulus of 

elasticity were recorded by the 14-day test, and the results of the 28-day coefficient of 

thermal expansion test exhibited a slight decrease as well. These differences were probably 

due to variation in different concrete specimens and machine calibration errors. Nevertheless, 

all the test data were in a reasonable range and met minimum construction requirements. 

Estimated initial set time and final set time were also obtained in accordance with ASTM C 

403. The detailed test results are shown in Appendix C.  

Maturity Calculation 

 The concrete maturity method is a simple and reliable quality control approach for 

estimating in-place concrete strength. This method accounts for both time and temperature 

effects on strength development. According to ASTM C1074 (1998), the maturity method is 

defined as “a technique for estimating concrete strength that is based on the assumption that 

samples of a given concrete mixture attain equal strengths if they attain equal values of the 

maturity index.” The method can help engineers determine appropriate times for form 

removal, traffic opening, and joint sawing so that the money can be saved through more 

efficient construction.  

 ASTM C1074 provides two alternative equations for maturity index calculation:  the 

temperature-time-factor-based Nurse-Saul function and the equivalent age-based Arrhenius 

function. The Nurse-Saul function assumes a linear relationship between the rate of strength 

development and temperature, while the Arrhenius function assumes an exponential 
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relationship between the rate of strength development and temperature. This study adopted 

the Nurse-Saul function that can be expressed as 

𝑀 = ∑ (𝑇 − 𝑇0
𝑡
0 )∆𝑇      (1) 

where 

𝑀 = maturity index, ˚C-hours (or ˚C-days),    

𝑇 = average concrete temperature, ˚F, during the time interval ∆𝑇,    

𝑇0 = datum temperature, 

∆𝑇 = time interval (hours or days).      

 The equation above can be used to calculate the maturity index by utilizing monitored 

temperature history. The maturity index is an indicator of concrete maturity that can be used 

to estimate the corresponding in-place strength. The datum temperature is 10 ˚C based on the 

recommendation given in ASTM C1074. The in-place strength estimation can be calculated 

from: 

𝑆 = 𝑆𝑢
𝐾(𝑡−𝑡0)

1+𝐾(𝑡−𝑡0)
      (2) 

where 

𝑆 = in-place compressive strength at age t,    

𝑡 = test age,    

𝑆𝑢 = limiting strength, 

𝑡0 = age when strength development is assumed to begin, 

             𝐾 = the rate constant.  

 According to equation (2), in-place strength can be calculated by using the estimated 

limiting strength, the rate constant, the test age, and the assumed age at which cement 

hydration began. The limiting strength and the rate constant can be found by developing the 
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plots described in ASTM C1074. Equation (3) below shows how to calculate the A-value for 

y-axis in the plot to determine the K-value, and Figures 3-51 and 3-52, respectively, show the 

concrete maturity curve and the relationship between the estimated in-place strength and the 

maturity index. 

𝐴 =
s

(𝑆𝑢−s)
      (3) 

where 

s = compressive strength from laboratory test. 

 

Figure 3-51. Concrete maturity curve. 
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Figure 3-52. Relationship between in-place strength and maturity index. 

 

 The concrete maturity curves shown in Figure 3-51 were determined from the sensor 

data and compressive strength data described earlier. Figure 3-52 shows the relationship 

between in-place strength and maturity index derived from different sensors. However, the 

RFID tags and the iButtons had similar average temperature readings, so their curves overlap 

one another. MEMS digital humidity sensors indicate higher average temperatures due to 

different sensor position and temperature measurement methods, so they lead to a relatively 
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nicely captured temperature variation for different pavement depth, weather, and seasons, 

and produced results consistent with early-age curling and warping behaviors of concrete 

pavement. However, as in earlier projects, some embedded sensors stopped functioning both 

during road construction and during the pavement-monitoring period. Table 3-3 depicts the 

number of embedded sensors surviving at various times throughout the entire monitoring 

period. According to this table, it can be seen that 19% of the sensors had stopped 

functioning after concrete paving and approximately 63% of the sensors gradually stopped 

functioning during the 10 months following traffic opening. Possible reasons for these 

malfunctions can be attributed to 

 Damage of sensors due to high alkali environment in concrete  

 Damage of sensors and wires incurred by paving and vibration operations of concrete 

paver  

 Corrosion of wires in concrete 

 Battery issues 

 Harsh climate and slab movement 

 High temperature, moisture, and adverse pH values all represent challenges to 

embedded-sensor survivability in plastic concrete. The high alkali environment in concrete is 

critical to sensors, especially moisture sensors, because their operation requires exposure of 

their sensing elements to the water vapor in concrete. In US Highway 30 road construction, 

two out of four MEMS digital humidity sensors directly failed and another MEMS digital 

humidity sensor could measure temperature only after concrete paving, probably due to alkali 

environment and extreme moisture content (liquid water) in the concrete. In addition to high 

alkali environment, other road construction activities can be considered as primary sources of 
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sensor malfunction as well, as happened in MnROAD construction. The paving and vibration 

operations of concrete pavers will generate huge lateral forces that can damage a sensor, 

loosen wire connections, and change the sensor position; the spreading plow or auger at the 

front of a paver used to spread concrete might also cut the sensor or its wiring, as shown in 

Figure 3-18. Wire also has potential for corrosion due to the chemical environment inside of 

concrete. Figure 3-53 shows the winter data acquisition process for RFID tags. During this 

process, the portable handheld transceiver “Pro” was generally able to identify tags but could 

not download data from some tags. Even though the distance between the “Pro” and RFID 

extended probes was only 2 ft., it’s still difficult to download data even though a range of 

300 ft. was claimed by the manufacturer. This difficulty could be related to battery issues 

such as reduction of battery capacity and battery life under severe temperature changes and 

harsh climate conditions such as repeated freezing-thawing cycles that might lead to sensor 

malfunction or low signal strength. Even the ambient RFID tags stopped functioning during 

winter time. Slab movement could also be a source of sensor damage. 

Table 3-3. Sensor survivability evaluation. 

Sensor 

Number of Sensor Survived 

May 23 

2013 

May 24 

2013 

Jun. 14 

2013 

Aug. 22 

2013 

Dec. 6 

2013 

Apr. 1 

2014 

RFID temp (Ex. Probe) 8 8 7 3 2 1 

RFID temp (Em. Probe) 4 4 4 2 1 0 

EMS RH/Temp. 4 2 2 1 1 1 

ibutton (Temp) 4 4 4 3 3 3 

Longitudinal strain gage 7 4 4 3 3 0 

Total 27 22 21 12 10 5 
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Figure 3-53. Data acquisition of RFID extended probes in winter. 

 

 Although several sensors malfunctioned after road construction, the 81% sensor 

survival rate at the beginning of opening to traffic could still be regarded as successful 

instrumentation in comparison to previous pavement instrumentations (Sebaaly et al., 1991). 

Furthermore, the result of the concrete maturity calculation shows the benefit of using the 

SHM of pavement. By using MEMS sensors, maturity could be directly calculated on-site 

and immediately generated as one of the sensor-system outputs. However, the performance 

of the off-the-shelf MEMS sensors deployed on US Highway 30 illuminated the current 

limitations, i.e., packaging, wires, signal strength, etc., when using them in pavement health-

monitoring systems. A wireless communication system with robust packaging for the MEMS 

digital humidity sensor was thus implemented to demonstrate a preliminary design for a 

wireless sensor system. 

 

RFID extended probes 
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CHAPTER 4  

IMPLEMENTATION OF WIRELESS COMMUNICATION SYSTEM TO MEMS 

SENSOR 

 

Implemented Wireless System Overview 

 The wireless system discussed in this study was a preliminary design mainly focusing 

on the wireless transmission function motivated by field instrumentation in US Highway 30. 

In this study, an Institute of Electrical and Electronics Engineers (IEEE) standard-based 

wireless system was utilized because of both its low price and low power consumption. A 

MEMS digital humidity sensor was used as sensing unit; this pin-based sensor had no 

packaging for its sensing element so an additional robust packaging was also required. 

 This wireless system could be subdivided into two parts: wireless transmitter and 

wireless receiver. The wireless transmitter was interfaced with a MEMS digital humidity 

sensor to transfer the data captured, while the wireless receiver received transmitted data and 

downloaded it to a computer through a USB port. Microcontrollers and XBee-PRO modules 

were used for both the transmitter and the receiver. 

Wireless Protocols 

 As described earlier, wireless network protocols are used to define or standardize the 

rules and conventions for communication between devices (Lee et al., 2007). The wireless 

protocol implemented in this design was ZigBee, used to construct a decentralized self-

healing wireless mesh network. In this mesh network, nodes can find a new route when an 

original route fails (Texas Instruments, 2013). ZigBee is the standard IEEE 802.15.4-based 

protocol; in addition to ZigBee, there are also other possibilities, including Bluetooth, Wi-Fi, 

cellular, etc. Table 4-1 gives a comparison between different wireless technologies by 
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evaluating their total scores derived from weighted scores considering various aspects such 

as data rate, range, energy consumption, etc. In this table, the weighted score of each aspect 

is calculated by multiplying its weight by the score of each specific wireless technology; a 

higher total score represents a better wireless technology for this application. Based on this 

table, it can be seen that ZigBee is more energy-efficient, cost-effective, and easier to work 

with than the other technologies.  

Table 4-1. Comparison of wireless technologies (Al-Khatib et al., 2006). 

Aspects Score (0 to 10) 

Factors Weight Bluetooth ZigBee Wifi Cellular 

Multi‐node network support  100 5 10 10 10 

Throughput 60 7 6 8 3 

Data rate 60 7 6 10 10 

Range 50 6 5 7 10 

Ease of implementation 50 6 8 6 4 

Power consumption ‐80 6 2 8 6 

Cost ‐100 5 3 7 8 

Total Score 460 910 390 200 

 

Microcontrollers 

 Arduino board is a single-board microcontroller consisting of an Atmel AVR® 8-bit 

or 32-bit microcontroller which can be wirelessly programmed by a device utilizing the 

ZigBee protocol (Atmel, 2014). In this study, Arduino Uno and Arduino Mega 2560, 

respectively, shown in Figure 4-1, were used for the wireless transmitter and receiver. 

The Arduino Uno is a microcontroller using an ATmega328 processor with 32 KB of 

flash memory, 2 KB of static random-access memory (SRAM), and 1 KB of electrically-

erasable programmable read-only memory (EEPROM). The board has 14 digital input/output 

pins, 6 analog inputs, a 5-volt linear regulator, a 16 MHz ceramic resonator, a USB 

connection, a power jack, an In-Circuit Serial Programming (ICSP) header, and a reset 
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button. The Arduino Mega 2560 is similar to the Arduino Uno but it has an ATmega2560 

processor with 54 digital input/output pins, 16 analog inputs, 4 hardware serial ports 

(UARTs), and a 16 MHz crystal oscillator. The Arduino Mega 2560 is compatible with most 

shields designed for the Arduino Duemilanove or Diecimila and it has 256 KB of flash 

memory, 8 KB of SRAM, and 4 KB of EEPROM for storing code and data. These two 

microcontrollers were selected because of their high reliability and low cost. Furthermore, 

Arduino 1.0.4 (open-source software) can be used for program coding such as setting up a 

time interval, changing the format of exported data, etc., to control both the Arduino Uno and 

the Arduino Mega 2560.   

 
(a)                                                             (b) 

Figure 0-1. Microcontrollers: (a) Arduino Uno for wireless transmitter; (b) Arduino 

Mega 2560 for wireless receiver. 

 

XBee-PRO Modules      

 XBee-PRO RF module (series 1) as shown in Figure 4-2 is a wireless device, which 

can offer low cost wireless connectivity in ZigBee mesh networks. It is reliable in point-to-

point, multipoint wireless transmission and is designed to conform to the IEEE 802.15.4 

standard. Furthermore, the XBee-PRO module has an easy set-up process; its software is 

called X-CTU, and it can adjust frequency, signal strength, energy consumption, etc. An 

XBee Explorer Regulated board can also be used to help regulate the voltage input. 
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                                                  (a)                                        (b)  

Figure 4-2. XBee device: (a) XBee-PRO modules; (b) XBee Explorer Regulated. 

 

Wireless Transmitter   

 The wireless transmitter shown in Figure 4-3 consists of a MEMS digital humidity 

sensor, an XBee-PRO module, an XBee Explorer Regulated, an Arduino Uno 

microcontroller, and twelve 1.5V AA batteries. Among these devices, the XBee Explorer 

Regulated is a board that can be pinned onto the XBee-PRO to help it regulate the voltage 

input. At the wireless transmitter, both a SHT71 sensor and an XBee-PRO with XBee 

Explorer Regulated were pinned to the digital port and power port on the Arduino Uno board. 

Meanwhile, twelve 1.5V AA batteries were placed in a plastic holder and connected to the 

microcontroller to power the entire wireless transmitter through the board’s voltage output 

pin. Furthermore, because the entire wireless transmitter will be buried in concrete, a robust 

packaging framework is needed, as will be discussed later. 

  

Figure 4-3. Wireless transmitter. 
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Wireless Receiver 

 Figure 4-4 is a photograph of the wireless receiver; it consists of an XBee-PRO 

module, an XBee Explorer Regulated, and an Arduino Mega 2560 microcontroller. The 

XBee Explorer Regulated used here plays the same role as in wireless transmitter. However, 

there was no battery used on the Arduino Mega 2560 because it is computer-powered 

through a USB cable. The XBee-PRO on the Arduino Mega 2560 was paired with the other 

XBee-PRO on the Arduino Uno in the wireless transmitter to receive the transmitted data. 

The data was then stored on the Arduino Mega 2560 in a data-storage module with 4096 

bytes of non-volatile memory.  

 

Figure 4-4. Wireless receiver. 

 

Packaging 

 Robust packaging is required to protect both the sensor and wireless transmission 

devices like the XBee-PRO module and the microcontroller to ensure that they can work 

properly inside the concrete. The packaging functions include protecting the wireless 

transmitter during sensor installation and pavement construction processes, protecting the 

sensor from alkali-cement hydration reaction, and protecting the wireless transmitter under 

harsh climate and traffic condition.  
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 Two types of in-house packaging were designed to protect the sensor, the 

microcontroller, and the XBee-PRO module. For the MEMS sensor, a piece of adhesive tape, 

a protection filter cap, and steel wool comprised a protective package to prevent direct 

contact between the raw sensor and fresh concrete, as shown in Figure 4-5. In this packaging, 

a filter cap was attached to the top of the MEMS sensor using adhesive tape, and steel wool 

was used to attach the sensor. For the microcontroller and the XBee-PRO module, a small 

box with an open bottom was prepared; it was comprised of a 0.5 in. thick wooden board and 

a wooden board nailed to a 7.1 in. long sharp-edged wood stick, A hole was drilled on the 

board nailed to the stick to permit a sensor cable to pass through and be connected to the 

Arduino Uno microcontroller. The size of the box was 6.3 in. × 4.1 in. ×3.5 in., sufficient to 

contain the entire wireless transmission system, as shown in Figure 4-6. Silicon glue and 

adhesive tape were additionally used to seal the small gap in the box. However, it should be 

noted that the basic design concept for the packaging for the moisture sensor was to use the 

material like a filter to allow only water vapor to pass through. Furthermore, an extra eight 

sensors packaged in the same way were first tested in mortar specimens, and seven out of the 

eight were able to continuously capture data, indicating that this packaging was successful. 

 

Figure 4-5. MEMS sensor with packaging. 
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Figure 4-6. Packaging for wireless transmitter. 

 

Evaluation of Implemented Wireless Communication System 

Working Principle of Implemented Wireless System  

 The data-exchange principle of this wireless system is based on the ZigBee protocol. 

This system requires no external cables. When it is turned on, the MEMS sensor will sense 

temperature and RH and transfer that data to the XBee-PRO through the Arduino Uno 

microcontroller. Then the XBee-PRO, at the wireless transmitter, will transmit data to the 

paired XBee-PRO at the wireless receiver through an antenna; this data will be stored in the 

Arduino Mega 2560, so the wireless receiver and a computer must be placed nearby because 

only the Arduino Mega 2560 microcontroller is used to store data in this wireless system. 

The data can finally be downloaded to the computer through software called “CoolTerm”, a 

simple freeware serial port terminal application without terminal emulation that supports data 

exchange with hardware connected through serial ports (Sparkfun Electronics, 2014). 

Temperature, relative humidity, and dew point are the data elements exported from the 

system. 
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Comparison between Wired MEMS System and Implemented Wireless MEMS System  

 Figure 4-7 provides an overall system-level comparison between a wired MEMS 

system and the wireless MEMS system developed for this study. In the wired MEMS system, 

the sensor must be connected to the data reader and the computer through cables to 

continuously monitor concrete properties and the data. As a consequence, both the data 

reader and the computer require an electrical power supply. However, the implemented 

wireless system requires no external cables and can thereby save installation time and reduce 

the risk of sensor malfunction.  

 

Figure 4-7. Comparison between previous wired MEMS system and implemented 

wireless system. 

 

Evaluation of Wireless Communication Capability 

 To test the reliability and survivability of the wireless communication system inside 

the concrete, both wireless transmitter and receiver were embedded in concrete as shown in 

Figure 4-8 to conduct a success rate test. Success rate refers to the rate of data transmitted 

from the transmitter in successfully reaching the receiver. The higher this rate, the more 

reliable the system will be.  
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Figure 4-8. Wireless MEMS system inside concrete. 

 

 The success rate test was conducted for the wireless MEMS system inside concrete 

buried underground by gradually increasing horizontal and vertical distances between 

wireless transmitter and receiver, as shown in Figure 4-9. The test results indicated that the 

wireless communication system was able to successfully transmit temperature and RH 

measurements with a nearly 100% success rate when the receiver was horizontally positioned 

approximately 150 ft. away from transmitter.  

  
                                                  (a)                                                            (b) 

Figure 4-9. Success rate test: (a) wireless MEMS system inside concrete buried 

underground; (b) vertical distance measurement for data transmission. 
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Future Improvement 

 The objective of this study was to investigate the feasibility of implementing wireless 

based MEMS for concrete pavement structural health monitoring. The system requirements 

for the wireless MEMS system were derived from field experiences from the wired MEMS 

system used in US Highway 30. In this design, a wireless communication system was 

integrated with off-the-shelf MEMS sensors originally designed to be wired. The wireless 

MEMS system developed was capable of providing reliable temperature and RH 

measurement data over a distance of more than 150 ft. from the receiver when embedded in 

concrete. However, the entire system was still energy consuming for the current-limited 

energy source. It could work for just a few days at a reasonable data-sampling rate using 

twelve 1.5AA batteries. The lifetime of these batteries could easily be diminished by harsh 

environmental factors like high temperatures occurring during concrete hydration; extremes 

of both temperature and humidity can reduce the lifetime and capacity of such batteries.  

Furthermore, future research should focus on increasing memory capacity and making the 

whole system smaller.  Some recommendations for resolving the aforementioned issues are: 

 A power management circuit called Texas Instruments Debuts TPL5000 power timer 

can be used to control power output of battery; this can possibly extend the current 

working time to as much as several years under ideal conditions. 

 A micro-SD card or QuadRam Shield can be added to the microcontroller to 

tremendously increase its memory capacity. 

 A smaller microcontroller called an Arduino Fio with an XBee plug, shown in Figure 

4-10, can be used to replace the original microcontroller to reduce overall system size. 
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Figure 4-10. Arduino Fio (left) and Arduino Mega 2560 (right). 
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CHAPTER 5   

REQUIREMENTS FOR STRUCTURAL HEALTH MONITORING (SHM) SYSTEM 

USING SMART SENSING TECHNOLOGIES 

 

This chapter summarizes the issues of using MEMS and wireless sensors in pavement 

health monitoring system based on previous literature review, field instrumentation, and 

implementation of a wireless communication system. The requirements of advanced SHM of 

pavement system are addressed to generate some ideas regarding the strategies that can be 

effectively used in resolving related issues. A cost evaluation for pavement SHM system and 

the architecture of advanced pavement SHM system are presented. 

 

Issues on SHM of Pavement System 

 Over the decades of pavement instrumentation, the general issues related to pavement 

SHM systems can be mainly divided into four categories: sensor selection, sensor 

installation, sensor packaging to prevent damage from road construction, and monitoring. 

These issues exist in the beginning of planning a SHM system for pavement infrastructures 

until the end of monitoring period. Each of these categories can be crucial to SHM of 

pavement, so relative strategies must be identified to develop Micro-Electromechanical 

Systems (MEMS)-based smart wireless sensing technologies for structural health monitoring 

of concrete pavement. Table 5-1 summarizes the issues related to each category. The 

corresponding requirements of the advanced SHM of pavement system are discussed in the 

latter part of this chapter. 
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Table 5-1. Issues on SHM of pavement system. 

Aspect Issues 

Sensor selection 

Effect of asphalt/concrete medium, temperature and moisture effects, 

battery life (measurement frequency), placement, sensor specifications 

and operating characteristics, cost, hardware architecture, packaging, 

delivery time 

Sensor 

installation 
 

Optimal number, optimal locations to capture critical responses, 

orientation/direction, read/write range (placement depth), repeatability 

and reproducibility, the way of installation (embedded or surface-

mounted), training sensor instrumentation personnel off site 

Road 

construction 

Design and cost of durable sensor packaging, packaging for moisture 

sensor 

Monitoring 

Monitoring period, data measuring interval,  frequency of data 

collection,  data signal interference, wireless communications (“hop” 

network architecture), off-site power, data transfer and storage, 

protection of equipment, data acquisition systems, embedded software 

 

Cost Evaluation for SHM of Pavement System 

The cost to implement SHM systems in similar projects can vary a great deal because it is 

associated with design, materials, labor and many other factors that depend on the scale and 

type of structure, number and type of sensors, site location, monitoring period, etc. There is 

therefore no standard cost for a typical pavement SHM system at this time. However, the 

typical factors contributing to total SHM cost are: 

 Type and number of sensors (traditional sensor /MEMS based, wired/wireless, 

static/dynamic, active/passive, etc.) 

 DAS (automatic or manual)  

 Sensor and DAS installation cost 

 Travel cost (site investigation, sensor installation, data collection, etc.)  

 Software  

 Protective equipment (cabinet for DAS, safety vests, helmets, etc.) 
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 Table 5-2 gives a unit sensor cost comparison between traditional sensors and MEMS 

sensors. In general, unit sensor cost depends on the number of sensors procured; a larger 

number of sensors typically will be associated with lower per-unit cost. According to Table 

5-2, MEMS sensors generally have a lower unit cost, varying perhaps from $3 to a few tens 

of dollars per sensor. Traditional sensor prices are usually range from $50 to $500. However, 

the cost of a DAS is much higher than that of a sensor. Table 5-3 illustrates the cost of DAS 

(The PC is not included) for some of the sensors from Table 5-2. It can be seen that the DAS 

is much more expensive and may cost $500 to $3,000 per unit. Furthermore, DAS using 

wired sensors usually have a limited number of connection ports so that a more 

comprehensive DAS must be purchased if large number of sensors are needed. When using 

MEMS sensors the cost of a DAS would be relatively lower because many MEMS sensors 

can use an evaluation kit/board equipped with a USB cable to read and transmit data to a PC, 

usually resulting in a relatively lower cost compared to a traditional data-logger. However, 

sensors can be interfaced with different data acquisition devices and their prices vary quite a 

lot over different models and accessories, so there is not a well-defined standard value for 

DAS cost.  

 In addition to sensor and DAS cost, SHM expense also includes labor cost. According 

to a report from Titi et al. (2012), the typical labor cost of an instrumentation plan/design 

with construction drawings ranges from $5,000 to $10,000. Furthermore, the maintenance 

cost per trip due to electrical storms or vandalism could be as much as $2,500 to $5,000, and 

the data processing cost depends on frequency.  
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Table 5-2. Sensor unit cost comparison as of 2014. 

Categories 
Traditional Sensors MEMS Sensors 

Manufacture (Model) Price ($)  Manufacture (Model) Price ($)  

Strain or 

Soil 

Pressure 

Geokon (4000 series) 120~600 

Melexis (90809) 7~8 

Geokon (3900 series) 605 

Vishay (EGP) 44 

Tokyo Sokki (PML) 143 

Encardio Rite (EDS) 65~90 

Endevco Corp. 5~10 

Marton Geotechnical Services 150~500 

Micron Optic (os3600) 649 

RST Instruments 70~90 

Smartec 65~90 

Omega (KFH) 110~290 

LTD 150~500 

Applied Geomechanics 150~500 

CTL (ASG) 500 

Temperature 

Omega (Thermocouple) 65~260 Analog Device (ADT7320) 3 

Geokon 

(Vibrating Wire Temperature 

Sensor) 

200 iButton (DS1921) 15~23 

Applied Geomechanics 200 
MEMS VISION 

(MVH3000D) 
N/A 

Slope Indicator 200 RFID tag Q350 series* 30~50 

Omega (RTD) 50~110 Sensirion (SHT71) 25 

Omega (Infrared temperature 

sensors) 
65~260 

STMicroelectronics 

( HTS221) 
4~3 

Omega (TT-K-24-100) 78 
MEMS VISION 

(MVH3000D) 
N/A 

Moisture 

Vaisala Inc. (SHM40) 635 Hygrochron iButton 4~3 

Decagon Devices (GS3) 260 Sensirion (SHT71) 25 

Irrometer Watermark (200SS) 90 
STMicroelectronics 

( HTS221) 
4~3 Campbell Scientific  

(CS616-L25) 
140 

Stevens (Hydraprobe II) 360 

MEMS VISION 

(MVH3000D) 
N/A Hydronix (Hydro-Probe II) 5,000 

Innovative Sensor 

Technology (MK33) 
32~50 

Note: * means wireless sensors, and the other sensors shown in the table are wired sensors. 
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Table 5-3. DAS cost comparison as of 2014. 

 
Traditional Sensors MEMS Sensors 

Sensor Type DAS Cost ($) Sensor Type DAS Cost ($) 

Strain or 

Soil 

Pressure 

Geokon strain gage 1,760 

Melexis (90809) N/A 
Micron Optic (os3600) 24,000 

Tokyo Sokki (PML) 3,000 

Vishay (EGP) 708 

Temperature 

Omega (Thermocouple) 549 

Analog Device 

(ADT7320) 
45~60 

iButton 40 

MEMS VISION 

(MVH3000D) 
N/A 

Omega 

(TT-K-24-100) 
450 

RFID tag Q350 series 2,000 

Sensirion (SHT 71) 640 

STMicroelectronics 

(HTS221) 
31.5 

Moisture 

Campbell Scientific 

(CS616-L25) 
1,465 

Hygrochron 40 

MEMS VISION 

(MVH3000D) 
N/A 

Stevens (Hydra probe 

II) 
3,270 

Sensirion (SHT 71) 640 

STMicroelectronics 

(HTS221) 
31.5 

 

Requirements for Smart Pavement SHM 

Sensor Selection 

 Selection of sensors can be crucial for pavement health monitoring. When assessing 

potential sensors, the following factors must be considered: 

 Capability of measuring pavement response  

 Reliability (i.e., accuracy, life time, survivability in pavement) 

 Availability (i.e., shipping time)  

 Cost    

 Practicality for field instrumentation 
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 Previous pavement instrumentation projects have disclosed the limitations of 

traditional wired sensors, including high cost, low reliability, complexity of field 

instrumentation, etc. Furthermore, traditional sensors usually have relatively large size and 

many external wires, so locating large numbers of sensors of different types to obtain 

continuous data may very likely cause logistical problems and potential damage to the 

structure. In addition, data acquisition systems must be placed in close proximity to the 

pavement, causing more problems in such elements as power supply and data storage and 

transmission. However, an on-site data acquisition system for a test track may not have such 

problems because on-site office structures are usually built alongside the test track in projects 

like MnROAD and Virginia Smart Road; this is not realistic for an actual highway. All these 

drawbacks combine to limit the use of SHM for pavement systems. Therefore, it is important 

that sensors used in pavement health monitoring should have small size, be wireless, have 

low cost, and include an on-board CPU. However, it should be noted that a sufficiently long 

strain gage length is required to precisely capture the strain values in a concrete matrix. 

Based on Copley (1994), a gage length three to five times the maximum aggregate size 

should be sufficient. 

It’s already universally accepted that MEMS-sensor technology can provide 

improved system performance, reliability, longevity, and safety compared to existing 

traditional wired-sensor systems. Their on-board CPUs support a more efficient type of data 

interrogation. Compared to a traditional sensor, a MEMS sensor has a lower unit cost and 

smaller size, making it possible to increase in-pavement array density to obtain more data. 

Furthermore, through the micro-fabrication of MEMS technologies, a highly-integrated 

multifunction sensor capable of simultaneously measuring several parameters such as 



www.manaraa.com

101 

temperature, RH, and strain can be developed. This multifunctional MEMS sensor can also 

reduce the number of sensors needed, further reducing installation cost.  

A wireless sensor system has many benefits such as low installation cost and time, 

elimination of wire damage, good flexibility, etc. The common wireless technologies used in 

civil infrastructure include the earlier-described RFID and ZigBee. However, the main 

challenge for a wireless sensor system is related to the battery issue. In general, pavement has 

a designed life from 20 to 50 years and maintenance and rehabilitation can be scheduled 

every 5 to 15 years (Luhr et al., 2010). Therefore, the monitoring period should extend over 

decades ideally. However, current commercial battery life can only be extended as much as 

about 10 years under ideal conditions and common sensors equipped with internal batteries 

have only a 2 to 6 year continuous working time (Roberts, 2006). For example, the iButton 

and the active RFID tag used in the US-30 Highway project have maximum battery lifetimes 

of 2 and 6 years, respectively. The harsh climate in a real highway can greatly reduce battery 

life, and there is no feasible way to replace embedded-sensor batteries in concrete. 

Accordingly, a passive wireless system should be more suitable for long-term pavement 

health monitoring.  

The aforementioned passive RFID tag usually uses an antenna to convert the wireless 

signal from the RFID reader into operating power; the idea is to convert electromagnetic 

wave or RF radiation into DC electrical power. Other potential energy scavenging sources 

that might be used by self-energy-harvesting systems include wind, solar, thermoelectricity, 

and physical vibration (Yildiz, 2009). Among these options, physical vibration could be an 

ideal energy source for pavement health monitoring because it uses strain changes caused by 

passing vehicles. Therefore, piezoelectric material can be used to make the accelerometer or 
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transducer for harvesting energy from the physic vibration. In addition to using passive 

systems, the computational capabilities provided by logical blocks on a board-mounted CPU 

can be incorporated into the sensor by MEMS technologies to manage power. In this 

situation, energy might be conserved by putting the device into a sleep mode, as described 

earlier. 

To summarize, the Smart Pavement SHM needs to have MEMS-based sensors, 

wireless capability, multifunctionality, and be self-powered. Therefore, a wireless MEMS 

multifunctional sensor containing a self-energy harvesting system represents a promising 

solution for a Smart Pavement SHM. Durable packaging is also required in this system to 

protect the sensor from concrete. This kind of wireless multifunctional MEMS sensor is, 

however, not yet commercially available, because fully integrating all the sensing elements 

may result in relatively excessive device dimensions and high unit cost due to complex 

fabrication, assembly and implementation. More importantly, energy consumption may be 

large because of the need to simultaneously measure a number of parameters. 

Sensor Installation 

 In planning a SHM system, questions always emerge like how many sensors are 

needed and where the sensors should be installed. Installing sensors throughout the entire 

structure can produce a superior database but may not be realistic because of cost, logistics, 

and potential cracking issues. For that reason the number and locations of sensors should be 

optimized at the planning stage. 

 Temperature, moisture, and strain sensors are the most common types installed in 

pavement infrastructure. Vertical displacement gauges such as linear variable differential 

transformers (LVDTs) placed at the pavement bottom are often used to measure vertical 
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movement of a concrete slab. Pavement sensors can be grouped into pavement response 

sensors such as strain gages and LVDTs and pavement environmental-condition-monitoring 

sensors such as temperature and moisture sensors. In optimizing the number of sensors and 

their locations, critical locations within the pavement should be determined.  

 A rigid pavement consists of a series of concrete slabs. The critical locations at which 

to monitor concrete slab response under load are at the middle of longitudinal joint, the 

middle of transverse joint, and slab corner, where suffer more from load than other positions 

(Darestani, 2007). The PCC pavement response sensors should be installed at these locations. 

Strain gages are usually installed at top and bottom positions location while LVDTs are 

usually installed at the bottom, as shown in Figure 5-1. As for flexible pavement, critical 

locations are pavement surface and bottom layer, top of intermediate layer, and top of 

subgrade (Timm et al., 2004). PCC Pavement environmental-condition-monitoring sensors 

should be installed at center, but also at various depths to record temperature and moisture 

variation with depth, as shown in Figure 5-2.  

 

Figure 5-1. Typical PCC pavement response sensors installation layout. 

Strain gage 

LVDT 
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Figure 5-2. Typical PCC pavement environmental-condition-monitoring sensors 

installation layout. 

 

It should be noted that the installation plan may require modification based on 

specific conditions such as project purpose, sensor types, sensor size, budget, etc. However, 

it is recommended that temperature and moisture sensors always be installed every 2 in. 

along the depth from top to bottom. The highest sensor embedded in the concrete pavement 

should be only 1 to 2 in. away from the surface. If a sensor needs to be installed at lesser 

depths, it is probably better to install it after concrete paving. 

 Pavement sensors are delicate so they must be very well-protected to increase their 

survivability. Previous projects using sensors anchored on wooden bars did not work well 

and led to a time-consuming process. Instead, a pre-manufactured cage may be useful in 

making the installation process both easier and faster. The sensor packaging and the wooden 

bar used to fix the location of sensors can be equipped with multiple screw holes to permit 

flexible mounting and increased reliability. An oblong rather than a cylindrical bar shape 

might be more stable during concrete spreading. A sensor might be installed in an 

instrumented core or even inside a hollow wooden bar so that the core or wooden bar could 

Temperature or moisture sensor 
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act as a shell and protect the sensor. A sensor might also be installed in a specially-designed 

gyroscopic frame so that its angle of orientation resulting from concrete paving could be 

measured. It is notable that the sheet metal boxes (See Figure 5-3) used in the pavement 

instrumentation conducted by the Ohio University had a 90% strain gage survival rate, so 

that approach might also be useful (Sargand and Khoury, 1999).  

 

Figure 5-3. Sheet metal boxes (Sargand and Khoury, 1999). 

 

 The quality of sensor installation directly affects sensor survivability in pavement, so 

training installers in advance will increase the survivability rate and save time. Furthermore, 

maintaining the vertical distance from the top sensor to the paver and vibrator to be greater 

than at least 1 in. will reduce vibration effects due to the construction equipment; pouring 

some fresh concrete on the top of sensor prior to paver operation can also mitigate the force 

from concrete spreading. The instrumented location should be remote from power lines to 

avoid electro-magnetic noise, and protection of the sensors and wires from shoulder paving 

and drainage system layout operation should also be considered. It is essential to 

communicate with the construction crew in developing an optimal installation plan.  
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Sensor Packaging to Prevent Damage from Road Construction 

As previously mentioned, packaging is crucial in establishing a reliable sensor 

system, particularly one with moisture sensors, to be used in pavement health monitoring. 

The cost of packaging can represent 75% to 95% of the overall product cost (Attoh-Okine, 

2003). Sensor packaging involves more than just choosing standard chip packages; it 

includes packaging for the whole sensor system. One therefore must take into account 

different system and assembly requirements, especially when using multifunctional sensors 

(Wang, 2010; Frank, 2013).  

 In general, packaging a system of MEMS sensors can be divided into three levels: die 

packaging, device packaging, and system packaging. The sensor die refers to the actual 

silicon chip containing the integrated circuit (IC) whose packaging system includes wafer 

packaging, sometimes considered to be another level of packaging (SILICON LABS, 2014b). 

Device packaging provides protection for micromechanical components immediately after 

their manufacture, and the system package protects the entire system, including battery, 

antenna, etc. (Chiao and Lin, 2006). 

In the packaging process, the structure of a MEMS sensor is first encapsulated by 

bonding the device wafer to a second wafer to protect it from moisture contamination and 

particle impingement before assembling it into a standard packaging module. During 

assembly of die packaging, to reduce potential packaging-material-induced stress on the 

sensor die, cavity packaging, specially-designed die coating, and transfer-molding processes 

are used to minimize such effects. Then die bonding and wire bonding complete device-level 

packaging, and insertion into a metal or plastic case accomplishes system-level packaging. 
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Figure 5-4 and Table 5-4 provide detailed descriptions for each level of packaging (IMEGO, 

2014, Amkor, 2014).  

 

 

 

 

 

Figure 5-4. MEMS sensor packaging system (Hsu, 2008). 

 

Table 5-4. MEMS sensor packaging methods and materials. 

Levels Packages 

Die 
Cavity packaging (CSP-cavity LGA package), CERDIP, Ceramic LCC, SOIC, 

and MLF® derivatives 

Device Die bonding, wire bonding, interconnect, etc. 

System 

Ceramic packages (basic dual in-line packages, chip carriers, flat packs, and 

multilayers packages), plastic packages (leadframe materials include copper 

alloy, nickel-iron, composite strip, etc.), metal packages (Kovar, cold rolled stell, 

copper, molybdenum, silicon carbide reinforced aluminum, etc.) 

 

New packaging materials and methods emerge virtually every day, but MEMS 

sensors are application-specific so it is hard to develop “one size fits all” packaging and 

sensor systems. Among the various sensors, the moisture sensor is most vulnerable to 

environment because to measure water vapor it must have access to its outside environment 

via an open pore, representing a severe challenge for MEMS sensor encapsulation (Wang, 

2010). The most common packaging for moisture sensors is a pre-molded open-cavity 

package. In concrete, both the high pH environment and excessive water exposure can 

damage moisture sensors through their open pores. Therefore, a hand-made simple packaging 
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approach is usually used for the moisture sensor to improve its performance, as described by 

Ye et al. (2006), Choi and Won (2008), and Wells (2005). However, there are no 100% 

reliable moisture sensors with robust packaging yet available, and most moisture sensors do 

stop functioning in concrete pavement a few weeks after road construction. As a result, 

engineers continue to pursue a reliable moisture-sensor packaging method to be used in 

pavement applications. There are also companies specializing in sensor-packaging design 

and manufacture. The following paragraphs give a summary of past packaging methods for 

moisture sensors used in pavement.  

Simple Packaging Used in the Field  

 Ye et al. (2006) conducted a literature review about curing in PPC pavement and a 

moisture sensor called Hygrochron was evaluated in that study. Choi and Won (2008) 

performed a similar study to identify compliance-testing methods for curing, and a plastic 

pipe with Gore-Tex was used to protect the Hygrochron sensor in concrete pavement, as 

shown in Figure 5-5. However, the pore size or the configuration of this fabric may have 

influenced the RH measurements and the readings in concrete therefore may not have been 

consistent (Choi and Won, 2008). Near the end of their study, an RH value over 100% was 

observed. 

 

Figure 5-5. Hygrochron packaged in the field (Ye et al., 2006; Choi and Won, 2008). 
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 Figure 5-6 illustrates a packaging method from Wells (2005) used in a field pavement 

construction project, similar to Choi and Won (2008). The University of Pittsburgh 

conducted a study in 2002 to investigate early-age concrete pavement behavior. In this study, 

a Sensirion SHT75 humidity sensor was used to monitor RH value; this was the same sensor 

used in the US Highway 30 study. During road construction, the moisture sensor was inserted 

into a plastic cylindrical tube and the enclosure was sealed with a circular Gore
TM

 membrane 

vent using ordinary superglue. The idea behind this kind of packaging was to protect sensors 

from direct contact with the concrete mixture, but the majority of the sensors later stopped 

functioning and unrealistic RH measurement values above 100% were also observed. The 

reason for these failures was probably due to condensation along the sensor tips.  

 

Figure 5-6. Moisture sensor packaging (Wells, 2005). 

 

Wang (2013) performed a study of sensor network applications in building 

construction. He used polyoxymethylene plastic to make a package for prevention of direct 

contact with liquid in fresh concrete, as shown in Figure 5-7. A Gore screw-in vents was used 

to provide a protective seal over the sensor to allow diffusion of moisture vapor only. 
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Furthermore, the final dimensions of this packaging were 65 mm in diameter and 45 mm in 

height. 

 

Figure 5-7. Moisture sensor packaging (Quinn and Kelly, 2010; Wang, 2013). 

Spherical Steel Platform 

 Lian et al. (2010) have developed the embedded wireless strain/stress/temperature 

sensor platform for highway applications shown in Figure 5-8. This steel platform was 

spherical in shape with a 3-inch diameter. The top half of this platform contained an RF data 

acquisition/control/communication board along with pressure, strain, moisture, temperature, 

and three-axial acceleration sensors, and the bottom half contained a rechargeable battery and 

Faraday energy-harvesting devices. The platform has large power consumption and is still in 

the testing stage. 

.  

Figure 5-8. Wireless strain/stress/temperature sensor platform (Lian et al., 2010). 
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Porous Cement Paste 

 Bennett et al. (1999) installed temperature sensors in an instrumented core to measure 

temperature of pavement as described in the literature review of Chapter 2. Barroca et al. 

(2013) used a similar approach to embed the moisture sensor in a porous mortar cube, as 

shown in Figure 5-9. In this study, the moisture sensor was fabricated by first welding a filter 

cap and a filter membrane and it was then buried in a porous 2 in. mortar cube made with 

coarse sand using a low water/cement ratio of 1:3. In this packaging system, the mortar 

worked as a shell to protect sensor wire connections during concrete casting, and the high 

porosity of this cube allowed the sensor to measure the RH level of concrete through the 

pores. 

     
                    (a)                                     (b)                                                (c) 

Figure 5-9. Sensor packaging made by Barroca et al. (2013): (a) sensor fabrication; (b) 

Porous mortar shell; (c) concrete casting. 

 

Stainless Steel Jacket 

 Sarrfi and Romine (2005) conducted a study to develop a sensor capable of 

measuring both temperature and moisture.  The sensor die was protected by a polymeric 

coating and the whole chip was encapsulated in a stainless steel jacket equipped with a 

ceramic filter for RH measurement, as shown in Figure 5-10 (Saafi and Romine, 2005; 

Jackson et al., 2008; Norris et al., 2008). The dimensions of the completed sensor are 3 mm 

in height and 5 mm in diameter. 
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                          (a)                                                                           (b) 

Figure 5-10. Stainless steel jacket packaging: (a) Sensor die by polymeric coating (Saafi 

and Romine, 2005); (b) stainless jacket packaging (Norris et al., 2008). 

 

Moisture Sensor with Detecting Probe 

 There have been several probe-based moisture sensors, including the MK33 and the 

Hydro-Probe II Moisture Sensor, claimed to be applicable to internal concrete RH 

measurement. The MK 33 is a capacitive sensor that could be directly embedded in concrete 

mixture because of its high solvent and hot water resistance, as shown in Figure 5-11 (a) 

(Every and Deyhim, 2009).  The Hydro-Probe II moisture sensor is a sensor using digital 

microwave to measure RH in concrete, as shown in Figure 5-11 (b). Similarly to MK 33, the 

Hydro-Probe II moisture sensor can be directly placed in plastic concrete to provide reliable 

RH measurement. However, this sensor is very expensive with a unit cost of more than 

$5,000 (Sebesta, 2013). In addition to the MK33 and the Hydro-Probe II Moisture Sensor, 

other probe-based moisture sensors such as Time Domain Reflectometer (TDR) and the 

Stevens Hydra Probe are often used in soil-moisture detection. These probe-based moisture 

sensors are, however, unable to provide an RH profile versus pavement depth. 
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                          (a)                                                       (b)                                                            

Figure 5-11. Moisture sensor with detecting probe: (a) MK33 humidity sensor (Every 

and Deyhim, 2009); (b) Hydro-Probe II moisture sensor (Hydronix, 2014). 

 

Monitoring 

The monitoring period can be divided into either short-term or long-term intervals 

depending on project objectives, sensor survivability, and battery life. A short-term period 

might be just few months while a long-term period could be several years; a longer 

monitoring period is usually desirable even it’s hard to achieve. Data-measuring intervals can 

vary from one minute up to one hour. Typically, one-half hour should be sufficient for 

temperature and moisture measurements while strain can be measured each minute. Short 

intervals can, however, provide more detailed data while consuming more power, so a 

balance point between size of the data-measuring interval and battery life should be 

established. One strategy is to adjust the interval depending on changes in situation. It’s well 

known that early-age behavior of concrete pavement may impact long-term performance, so 

at early age a short measuring interval might be applied (Ruiz et al., 2005). Then longer 

intervals can be used for the time remaining to consume less energy; they might be shortened 

when a critical situation is detected. Early age is defined as the first 72 hours after pavement 

construction by the Federal Highway Administration guidelines, although sometimes the 

term may refer to the time before traffic opening (Ruiz et al., 2005). 
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Daily data collection and backup is preferred to guard against accidental data loss, but 

this may depend on specific situations affected by weather, distance, cost, etc. Onsite DAS 

and power sources should be protected from harsh climate and local animals. However, if 

wireless sensors are used, a moving truck mounting a DAS could be used for data collection. 

To achieve this goal, reliable wireless transmission technology is required to provide a strong 

signal and eliminate electronic interference, as shown in Figure 5-12 (Lajnef et al., 2013). In 

addition to a vehicle mounted with DAS, a two-level wireless communication system for 

remote data collection might be employed. The first level would use a wireless 

communication device at the data collection site. This device would act as a transfer station 

to transmit data via the internet to the second level. Figure 5-13 shows an example of this 

kind of wireless device, an “i-TOWER” used in the HardTrack concrete-monitoring system. 

It can transmit data via cellular internet with a built-in 3G/4G Hot-Spot. Furthermore, it can 

be powered with either turbine or solar power (Wake, Inc., 2014).  

 

Figure 5-12. RF reader mounted on a moving vehicle (Lajnef et al., 2013). 

 

RF signals 
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Figure 5-13. i-TOWER with turbine & solar panel (Wake, Inc., 2014). 

  

Architecture of Smart Pavement SHM System 

Smart Pavement SHM is defined as long-term, continuous, sustainable pavement 

system providing information about in-situ pavement conditions to prevent multi-faceted 

safety concerns, including pavement deterioration. The previous literature review in Chapter 

2 has described the need of Smart Pavement SHM for both highway and airfield pavement. 

The basic concepts of the Smart Pavement SHM systems are similar for both highway 

pavement and airfield pavement. For airfield pavement, a SHM system can be combined with 

a Foreign Object Debris (FOD) detection system to provide in-time warning for appearance 

of FOD, which is the foreign substance or debris that could cause aircraft damage (Ang, 

2013). 

 Figures 5-14 (a) and (b) illustrate conceptual designs of highway and airport health 

monitoring systems, respectively. In both Figures 5-14 (a) and (b), the embedded smart 

MEMS sensor subsystem is a wireless multifunction MEMS sensor able to simultaneously 
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measure strain, temperature, and moisture. A robust packaging subsystem should also be 

implemented to protect the embedded smart MEMS sensors from pavement construction, 

high alkali environment of concrete, and harsh climactic and traffic conditions. A reliable 

DAS, mounted either on a moving vehicle for highway pavement or a control tower for 

airfield pavement, can be used for data collection, storage, and transfer from embedded 

MEMS sensors. An intelligent data-mapping model subsystem employing sensing data 

fusion and geo-spatial analysis approach can be utilized in data mapping of collected data 

from sensors installed at specific locations. Realistic characterization of pavement-layer 

properties and responses through an intelligent data-mapping model subsystem can be used 

to provide early warning about critical distress initiation, accurate airport pavement-life 

predictions, and planning pavement management activities, as well as calibration and 

validation of mechanistic-based pavement-response prediction models. Unlike highway 

pavement SHMs, smart MEMS sensor subsystem for airfield pavement SHM can be 

integrated with Electro-optical (EO) based distress and FOD detectors to monitor actual 

pavement surface condition. 
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(a) 

 

(b) 

Figure 5-14. Smart pavement monitoring systems for: (a) highway pavement; (b) 

airfield pavement. 
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Other Potential technologies for Development of Smart Sensing and Smart SHM on 

Pavement Infrastructure 

Fiber Optic Sensor System 

 A fiber optic sensor is a type of sensor that can either monitor environmental 

conditions or transmit data using fiber optic communication that modulates a light beam 

within the fiber. In general, fiber optic sensors have small size and weight and can be used in 

explosive and corrosive environments. They can also be used to provide distributed sensing 

along the optical fiber. Theoretically, hundreds of locations along a fiber just 1-m long can be 

measured. Furthermore, fiber optic sensors can be used to measure strain, temperature, 

humidity, pH, etc. (Balageas et al., 2006; Glisic and Inaudi, 2007; Rice, 2014). Figure 5-15 

illustrates a typical fiber optic sensor. 

 

Figure 5-15. Typical fiber optic sensors (Kottiswaran et al., 2014). 

 

Self-Sensing Concrete 

 Self-sensing concrete is a new alternative for Smart Pavement SHM relying on 

making measurements based on electrical resistivity, impedance, capacitance and so on (Han 

et al., 2014). It utilizes conductive materials such as nanotubes to configure an internal 

electric network inside the concrete, so properties such as stress and strain can be measured 
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based on piezoresistivity effects; the data can be acquired using either wired or wireless 

methods (Li and Ou, 2009; Sun et al., 2010; Han et al., 2014; Ubertini et al., 2014). Self-

sensing concrete can also be used to monitor traffic or melt snow in transportation 

infrastructures. Figure 5-16 illustrates a self-sensing concrete system for strain measurement. 

 

Figure 5-16. Self-sensing concrete for strain measurement (Han et al., 2014). 

 

Micro Battery with Nuclear Power 

 Battery life is a key factor for active wireless sensors used in health monitoring, and 

traditional battery technology may extend the work life by as much as 10 years (Roberts, 

2006). Micro batteries using nuclear energy may provide a solution that can increase battery 

life to several decades with sizes at the micro or even nano scale. This technology, still in the 

research stage, has its main concept that uses radioisotopes rather than fossil or chemical 

fuels (Guo et al., 2008). 

Vehicle Noise Based Roadway Health Monitoring 

 Vehicle noise based roadway health monitoring systems use a noise-based data 

collection system to evaluate infrastructure for proactive maintenance, operation, and safety. 

In such a system, a vehicle is used as mobile sensor to measure noise, vibration, and 

harshness. Sensing devices such as accelerometers can be mounted on the vehicle for such 
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data measurement and they generate less congestion than other methods (Yousuf and 

Morton, 2014). Figure 5-17 illustrates a versatile onboard traffic-embedded roaming-sensor 

(VOTERS) test van equipped with sensors, camera, and millimeter-wave radar to measure 

pavement surface conditions. 

 
(a) 

 
(b) 

Figure 5-17. Vehicle noise based roadway health monitoring: (a) VOTER test van; (b) 

Millimeter-wave radar (Yousuf and Morton, 2014). 
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CHAPTER 6   

SUMMARY, FINDINGS, RECOMMNEDATIONS 

 

Summary 

Early damage detection in transportation infrastructure systems could provide better 

pavement maintenance and rehabilitation strategies to give such system longer operational 

life. To perform such early damage detection inn transportation infrastructure, the Structural 

Health Monitoring (SHM) was conceived, has been implemented or is currently being 

implemented. Recent advancements in sensing technology make SHM more evolving and 

driving to develop the next generation of SHM, so called as Smart SHM. As considering 

current shift changes in SHM through applications of new sensing technologies, this study 

discusses the use of Micro-Electromechanical Systems (MEMS) based smart wireless 

sensing technologies on health monitoring of concrete pavement. The literature review 

results pertain to SHM of pavement infrastructure system was discussed to evaluate the 

current pavement SHM practices and to identify how terms of “Smart Sensor” and “Smart 

SHM” applied to transportation infrastructure systems have been defined in the literature. 

MEMS and wireless sensing technologies and their applications to pavement SHM 

reported in the literature were reviewed and documented as these have been considered as 

promising technologies to meet requirements of “Smart Sensor”. A field demonstration of 

off-the-shelf MEMS and wireless sensor system applications under actual in-service concrete 

pavement site was conducted to evaluate their performance, identify their limitations, and 

demonstrate how their sensed data can be utilized to monitor concrete pavement behaviors. 

The feasibility of implementation of a wireless communication system into the MEMS sensor 
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has been investigated. As following up literature review, field demonstration, and 

implementation of wireless communication system, issues regarding concrete pavement 

SHM using current available MEMS and wireless sensor system were synthesized and 

enumerated and the requirements for achieving Smart Pavement SHM were explored to 

develop the conceptual design of smart health monitoring of both of highway and airport 

pavement systems as the next generation of Pavement SHM.  The findings and 

recommendations drawn from this study can be summarized as follows: 

Literature Review     

 SHM can be useful for civil infrastructure to save both money and time by turning 

schedule-based maintenance into condition-based maintenance. However, the 

traditional sensor based SHM approach has limitations such as high installation cost 

and time, high array density, wire damage, and low survivability of sensors for long-

term application. Therefore, the traditional approach may provide neither 

continuously long-term monitoring for pavement structural behavior changes nor 

real-time warning indications of in-service pavement failure. 

 MEMS based sensor system is a type of promising smart-sensing technology that 

could be used to achieve Smart Pavement SHM. Most MEMS-based sensors for SHM 

purpose are still in the research stage and have not yet been commercialized. 

 Wireless sensors can save both installation time and cost and they do not present 

wire-damage concerns. Even though they represent a potentially huge benefit for 

SHM, they have not yet been widely applied to pavement health monitoring, and 

most research studies are still in the proof-of-concept stage.   
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Field Instrumentation and Evaluation 

 Sensor survivability is critical for long-term SHM of pavement systems. In the field 

instrumentation studied, about 78% of the embedded sensors remained functional 

one month after traffic opening, but only 20% were still functional ten months after 

traffic opening.  

 Temperature, moisture, and strain profiles were developed from the monitored data, 

and they accurately reflected weather and seasonal change, including effects of 

thunderstorms, heat waves, summer, and winter. Furthermore, curling and warping 

behaviors of concrete resulting from different temperatures at different concrete 

depths was observed and analyzed. According to the strain curve, the top concrete 

and bottom concrete showed opposite patterns of curvature. 

 The main reasons for cessation of sensor functioning included concrete paver 

operation, alkali-cement hydration reaction in concrete, corrosion of sensor wires, 

battery issues, harsh climate, and slab movement. The moisture sensor was more 

sensitive to chemical environment. Furthermore, the RFID tags had a low wireless 

communication range, probably due to battery issues, cold weather, and steel 

reinforcement in concrete.  

 Normal concrete tests were conducted in the laboratory and a concrete maturity 

curve was developed to estimate in-place concrete strength gain. However, MEMS 

digital humidity sensors showed a higher maturity index for same-design in-place 

strength because they indicated higher average temperatures.  
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Implementation of Wireless Communication System 

 The ZigBee based wireless network implemented for the MEMS sensors 

demonstrated reliable communication and achieved a high success rate over a 150 ft. 

span.   

 The Power consumption of the system was still high, mainly due to the 

microcontrollers, so a power-saving mechanism such as power management circuit 

could be added to extend its working time.   

Requirements for Smart Pavement Structural Health Monitoring System 

 Procedures and strategies for pavement instrumentation must be considered well in 

advance. Communication with the construction manager is important in increasing 

sensor survivability in pavement. 

 Use of MEMS sensors usually produces lower unit sensor cost and DAS purchase fee. 

 Robust packaging, especially for moisture sensors, is a key element for sensor 

survivability. However, no 100% reliable moisture sensor is yet available. 

 

Recommendations 

 Based on the findings of this research, the followings recommendations are proposed 

for future development of “Smart Sensor” and “Smart SHM” for pavement infrastructure 

systems. 

 A wireless multifunctional MEMS sensor with an energy-harvesting system and 

durable packaging is recommended for Smart Pavement SHM. A power-management 

circuit could also be used to reduce device power consumption.  
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 An active RFID system has a long communication range but limited lifetime and 

relative large size, while a passive RFID system has unlimited lifetime but a short 

communication range. Therefore, a semi-passive RFID system with internal batteries 

that can be also self-powered may be a solution combining the advantages of both 

active and passive RFID systems.  

 Several types of wireless communication systems given in Chapter 5 are 

recommended for data collection. The first system would use a vehicle-mounted DAS 

system to collect data using a passive wireless-sensor system. Wireless 

communication range and on-board data storage capacity would be critical factors in 

this whole system. The second system would use a two-level wireless system with a 

local data-transfer station powered by solar or wind. The data-transfer station could 

both collect data from embedded sensors and transmit data to a remote office. For 

example, a small scale-structure and near an office site could use an RFID system for 

first-level communication and a ZigBee network as a second level. Such a combined 

RFID and ZigBee-based monitoring system could improve monitoring efficiency and 

promise low cost.  

 For a large structure where data must be transmitted to a remote office, the data can 

be transmitted via the Internet (second level) so a technician could download data at 

either home or office. 

 RF communication usually has a limited range. The data can be lost if the 

transmission distance is too long, so a “Hop network” can be used to resolve this 

problem and save power (Zhao and Guibas, 2004). 
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 Sensor installation should use smart strategies to eliminate effects of road 

construction activities, as described in Chapter 5. Communicating with the 

construction manager as soon as possible to optimize the installation method is 

critically important. An easy sensor-installation method should also be investigated in 

the future. Specially-designed tools or packaging of sensors may be needed. 

 Other sensing technologies such as fiber optic sensor systems, self-sensing concrete, 

micro battery using nuclear power, and vehicle noise for roadway health monitoring 

are recommended for future investigation.  
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APPENDIX A: PUBLICATIONS COMING OUT FROM MASTER STUDY  

 

This appendix displays the two conference papers published from master study. 
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ABSTRACT: In recent years, structural health monitoring and management (SHM) has 
become a popular approach and is considered essential for achieving well-performing, long-
lasting, sustainable transportation infrastructure systems. Key requirements in ideal SHM of 
road infrastructure include long-term, continuous, and real-time monitoring of pavement 
behaviors under various pavement geometry-materials-loading configurations and 
environmental conditions. With advancements in wireless technologies, integration of 
wireless communications into sensing device is considered an alternate and superior 
solution to existing time- and labor-intensive wired sensor systems to meet these 
requirements. This study explored the development and deployment of a wireless 
communications sub-system into a commercial off-the-shelf concrete pavement monitoring 
sensor system. The overall goal was to investigate the feasibility of developing wireless 
based Micro-Electromechanical Sensors and Systems (MEMS) by integrating a wireless 
network system with off-the-shelf MEMS sensors. A success rate test was performed after 
the wireless transmission system was buried in the concrete, and the test results indicated 
that the system was able to provide reliable communications at a distance of more than 46 
m (150 ft.). This will be a useful feature for highway engineers performing routine 
pavement scans from the shoulder without the need for traffic control or road closure. 
 
 
KEY WORDS: Pavement, wireless, temperature, humidity, concrete, MEMS 
 
 

1. INTRODUCTION 
 
Like many advanced technologies, wireless sensor technologies were initially developed and 
deployed for military and industrial purposes. In recent years, these kinds of technologies 
are extensively applied in civil engineering infrastructure to measure the material and 
geometric properties changes for serviceability assessment, which is referred to as structural 
health monitoring (SHM). Over past decades, SHM has been widely used in civil engineering 
infrastructure to monitor structural integrity failures such as cracks, concrete deterioration, 
and steel corrosion. An early warning could avoid unnecessary costs to the maintenance 
programs. Moreover, continuously measured data can contribute to improved modeling and 
analytics resulting in prolonged system service life and reduced life cycle costs (Buenfeld et 
al., 2008; Mccarter et al., 2004). Wired sensor systems are widely used in traditional SHM to 
detect structural damage. However, the use of wired sensors can be very time-consuming 
and costly if a large number of sensors have to be installed to improve quality of measured 
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data in SHM. Furthermore, in cases where wires are buried in concrete, wires may be 
corroded or damaged. Due to these drawbacks, the use of wireless technologies is 
considered a promising substitute to provide better functionality at a lower price especially 
when a higher spatial density of sensors is desired (Kim et al., 2007). In addition, Micro-
Electromechanical Sensors and Systems (MEMS) technology has been investigated for SHM 
since MEMS make it possible for systems of all kinds to be smaller, faster, more energy-
efficient and less expensive (Ceylan et al., 2011). 
 
Numerous studies have been conducted to apply wireless sensor technologies in bridge 
system SHM (Maser et al., 1996; Lynch and Loh, 2006). However, only few recent studies 
have investigated these technologies in pavement system SHM applications. For instance, 
Lajnef et al. (2013) focused on development of a wireless strain sensing system for asphalt 
pavement SHM to detect fatigue damage. The sensor system developed in this study 
contained a low-power consumption wireless integrated circuit sensor interfaced with a 
piezoelectric transducer. This piezoelectric ceramic transducer was designed with an array of 
ultra-low power floating gate (FG) computational circuits and it could generate power to 
supply FG analog processor in the sensor under stress. Each sensor node could store the 
data and then periodically transmit them to Radio frequency (RF) reader mounted on a 
moving vehicle.  
 
The objective of this study was to investigate the feasibility of developing a wireless based 
MEMS for concrete pavement SHM.   A wireless network system was integrated with an off-
the-shelf MEMS sensor which was originally designed for wired data acquisition. The field 
performance of commercial wired MEMS sensors was evaluated in a newly constructed 
concrete pavement under actual traffic load and weather conditions to identify the system 
requirements for development of the wireless MEMS sensor system. A preliminary design of 
prototype wireless system with robust packaging was developed to improve the survivability 
of MEMS sensors. The wireless system utilized XBee-PRO modulus interfaced with Arduino 
boards to build the transmission system based on ZigBee protocol. The detailed procedure 
and findings pertaining to the development of wireless based MEMS are discussed.    
 

2. EVALUATION OF COMMERCIAL OFF-THE-SHELF WIRED MEMS SENSORS  

2.1. Description of evaluated sensor       
 
Temperature and moisture content are significant factors in the hydration process between 
cementitious materials and water, which in turn influence early-age concrete properties. 
Anomalies in the hydration process may result in insufficient strength and durability since 
the development of early concrete strength mainly depends on the moisture diffusion and 
hydration temperature (Ye, et al., 2006). Furthermore, concrete pavement can be subjected 
to deformation due to different temperature and moisture gradients throughout the 
concrete, commonly referred to as curling (temperature) and warping (moisture/humidity) 
behaviors. This, when combined with heavy traffic loading, could lead to cracking of slabs. 
Considering the significant impact of temperature and moisture gradients within the 
concrete slab on the overall slab behavior and performance, these two properties were 
selected for sensor-based measurement and health monitoring investigations.  
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The Sensirion SHT71 digital humidity sensor, classified as a commercial off-the-shelf MEMS 
device that can simultaneously measure Relative Humidity (RH) as well as temperature, was 
evaluated in this study. Note that moisture content measured inside concrete is typically 
expressed as RH which refers to the ratio of moisture content of air compared to saturated 
moisture level at the same temperature and pressure (Ye et al., 2006).  
 

The commercial MEMS digital humidity sensor integrates sensor elements coupled with 
signal processing circuitry on a silicon chip by MEMS technology to provide a fully calibrated 
digital output. A unique capacitive sensor element consisting of paired conductors is built 
out of the capacitor of MEMS sensor to capture humidity while another band-gap sensor 
measures temperature. These conductors are separated by a polymer dielectric that can 
absorb or release water proportional to the relative environmental humidity, and thus can 
change the capacitance of the capacitor (Sensirion, Inc., 2014). An electronic circuit 
calculates RH by measuring the capacitance difference. Additionally, the capacitance for the 
chip of this MEMS sensor is formed by a "micro-machined" finger electrode system with 
different protective and polymer cover layers, which can simultaneously protect the sensor 
from interference as well. However, in order to continuously monitor and store 
measurement data, MEMS sensors have to be connected with a data reader of evaluation kit 
EK-H4 (see Figure 1) and a computer which require power (battery) supply all the time.  
 

 
Figure 1: Sensirion SHT71 sensor (left) and evaluation kit EK-H4 (right) 

 

2.2. Field instrumentation and results         
 
A set of four wired commercial MEMS RH/Temperature (RH/T) sensors were instrumented in 
a newly constructed jointed plain concrete pavement (JPCP) in a US-30 highway section 
near Ames, Iowa, USA. The instrumented JPCP, constructed at 8:00 am on May 24, 2013, 
consists of 254 mm (10 in.) thick concrete slab with approximately 6 m (20 ft.) transverse 
joints spacing. The passing lane and travel lane widths for this JPCP are 3.7 m (12 ft.) and 
4.3 m (14 ft.), respectively. A 152-mm (6 in.) thick Hot-Mix Asphalt (HMA) shoulder was 
constructed approximately 28 days after concrete paving. A set of wireless temperature 
sensors and longitudinal strain gages were installed in the same section along with the 
commercial MEMS RH/T sensors for another series of investigations, which is not the focus 
of this study.  
 
Before the paving of concrete took place, the RH/T sensors were tied on to short wood 
sticks installed on top of the base course. As seen in Figure 2, all the cables/wires from the 
sensors were tied together and then placed in a polyvinyl chloride (PVC) pipe buried 
underground to protect them from damage during concrete paving operations. The cables in 
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the PVC pipe were connected to a Data Acquisition System (DAS) equipment (laptop, data 
logger, evaluation kit, and batteries) in a plastic shield box placed near the drainage ditch 
away from the HMA shoulder (See Figure 3). The installation of these wired sensors 
required great care, was time consuming and labor-intensive.      
  

 
Figure 2: Sensor instrumentation on US-30 highway section 

 

 
Figure 3: Data acquisition system 

 
 
Figure 4 illustrates measured temperature and RH profiles captured by wired MEMS RH/T 
sensors one month after concrete paving. This figure shows measurements from MEMS 
RH/T sensor No. 3 (installed at 51 mm (2 in.) below pavement surface and 711 mm (28 in.) 
away from shoulder) and MEMS RH/T sensor No. 4 (installed at 2.5 mm (0.1 in.) below 
pavement surface and 203 mm (8 in.) away from shoulder). Among the four sensors 
installed before paving, two sensors (No. 3 and No. 4) remained functional in measuring 
temperature inside concrete while one sensor (No. 4) measured only RH of concrete.  
 
The other two sensors, No. 1 and No. 2 (installed at 216 mm (8.5 in.) and 140 mm (5.5 in.) 
below pavement surface and 711 mm (28 in.) away from shoulder) malfunctioned several 
hours after concrete paving operations. This could probably be attributed to damages 
incurred to the wires/cables from concrete paver and vibrator operations. The sensor itself 
could also have been damaged because of the high alkali environment prevailing during 
concrete hydration. Data could not be acquired from May 26 to 28, 2013 since the battery 
(power supply) for the DAS was not recharged. These practical constraints and limitations of 
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wired sensor systems with respect to continuous monitoring and storage of measured data 
highlight the need for a self-powered, wireless sensor system. 
   

 
(a) 

 
(b) 

Figure 4: Commercial off-the-shelf wired MEMS RH/Temperature sensor measurements: (a) 
Temperature profile, (b) RH profile  

 

2.3. Lessons learned from field evaluation   
 
The on-site experiences from US-30 highway sensor installation and monitoring and the 
identified limitations of wired sensor systems proved to be resources in identifying the 
system requirements in the development of wireless MEMS sensor systems. These 
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limitations include time consuming and labor intensive installation process, poor sensor 
survivability caused by cable damage, and complicated sensor packaging required to protect 
sensor from high alkali environment during concrete hydration.           
 
Critical factors to be considered in wireless MEMS sensor systems include hardware 
architecture, packaging, embedded software, wireless signal strength, and low-power 
consumption under on-site conditions.  Considering these critical factors, a preliminary 
wireless system with a robust packaging for MEMS sensors was developed. This is discussed 
in the following sections.     

3. DEVELOPMENT OF WIRELESS COMMUNICATIONS SYSTEM 

3.1. Overview of wireless system         
 
The wireless system presented in this study was a preliminary design mainly focusing on the 
wireless transmission function. The wireless system could be divided into two parts: wireless 
transmission end and wireless receiving end. The wireless transmission end is used to 
transfer data from MEMS sensors into wireless transmission devices. The wireless receiving 
end connected with computer is used to download data without the need for a wire. 
Microcontrollers and XBee-PRO modules are required for the transmission and receiving 
ends to communicate with each other.  

3.2. Wireless network protocol         
 
ZigBee is selected as the wireless networking protocol. It can be used to construct a 
decentralized self-healing wireless mesh network.  In this mesh network, nodes can find a 
new route when the original route fails (Texas Instruments, 2013). Besides ZigBee, there 
are also other wireless technologies such as Bluetooth, Wi-Fi, and cellular. However, ZigBee 
is more energy-efficient, cost-effective, and easy to work with than these other technologies 
as shown in Table 1. Table 1 compares different wireless technologies by evaluating their 
total scores, which are sums of weighted scores from all the factors. The weighted score of 
each factor is to multiply its weight by the score of specific wireless technology. A higher 
total score represents better wireless technology for this application. 

 
Table 1. Comparison of wireless technologies (Al-Khatib et al., 2006) 

Aspects Score (0 to 10) 

Factors Weight Bluetooth® ZigBee® Wifi® Cellular 

Multi‐node network support  100 5 10 10 10 

Throughput 60 7 6 8 3 

Data rate 60 7 6 10 10 

Range 50 6 5 7 10 

Ease of implementation 50 6 8 6 4 

Power consumption ‐80 6 2 8 6 

Cost ‐100 5 3 7 8 

Total Score 460 910 390 200 
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3.3. Microcontrollers       
 
Arduino board is a single-board microcontroller consisting of an Atmel AVR® 8-bit or 32-bit 
microcontroller which can be wirelessly programmed by the device utilizing ZigBee protocol 
(Atmel, 2014). In this study, Arduino Uno and Arduino Mega 2560, as shown in Figure 5, 
were used for the wireless transmission end and receiving end, respectively.  
 
Arduino Uno is the microcontroller using processor ATmega328 which has 32 KB of flash 
memory, 2 KB of static random access memory (SRAM), and 1 KB of electrically erasable 
programmable read-only memory (EEPROM). It contains 14 digital input/output pins, 6 
analog inputs, a 5 volt liner regulator, a 16 MHz ceramic resonator, a USB connection, a 
power jack, an In Circuit Serial Programming (ICSP) header, and a reset button on its board. 
As for Arduino Mega 2560, it is similar to Arduino Uno but it has an ATmega2560 processor 
with 54 digital input/output pins, 16 analog inputs, 4 hardware serial ports (UARTs), and a 
16 MHz crystal oscillator. Moreover, the Arduino Mega 2560 is compatible with most shields 
designed for the Arduino Duemilanove or Diecimila and it has 256 KB of flash memory, 8 KB 
of SRAM and 4 KB of EEPROM for storing code and data. These two microcontrollers were 
selected due to their high reliability and low cost. Arduino 1.0.4 (open-source software) can 
be used for program coding to control both Arduino Uno and Arduino Mega 2560 such as 
setting up time interval, changing the format of exported data, and etc.   
 
 
          

 
 
 
 

 
 
 

Figure 5: Arduino Uno for wireless transmission end (left) and Arduino Mega 2560 for 
wireless receiving end (right) 

 

3.4. XBee-PRO modulus      
 
XBee-PRO RF modulus (series 1) as shown in Figure 6 is a wireless device, which can offer 
low cost wireless connectivity in ZigBee mesh networks. It’s reliable in point-to-point, 
multipoint wireless transmission and it is designed to meet the IEEE 802.15.4 standard. 
Furthermore, XBee-PRO modulus also has an easy set up process and the software used to 
program is called X-CTU, which adjusts its frequency, signal strength, energy consumption, 
and so on. Additionally, an XBee Explorer Regulated board can be used to help it regulate 
the voltage input. 
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Figure 6: XBee-PRO (left) and XBee Explorer Regulated (right) 

 

3.5. Wireless transmission         
 

The wireless transmission end as shown in Figure 7 consists of a MEMS sensor (SHT71 
digital humidity and temperature sensor), an XBee-PRO modulus, an XBee Explorer 
Regulated, an Arduino Uno microcontroller, and 12×1.5V AA batteries. Among these devices, 
XBee Explorer Regulated is a board that can be pinned on XBee-PRO to help it regulate the 
voltage input. In the wireless transmission end, both the SHT71 sensor and XBee-PRO with 
XBee Explorer Regulated were pinned on the digital port and power port on Arduino Uno 
board. Meanwhile, twelve 1.5V AA batteries were placed in a plastic holder connected with 
the microcontroller to power the entire wireless transmission end through the voltage 
output pin on the board. Furthermore, because the entire wireless transmission end will be 
buried in concrete, a robust packaging framework is needed for the wireless transmission 
system which will be discussed later.  

 

 
Figure 7: Wireless transmission end without batteries 

 

3.6. Wireless reception       
 
The wireless receiving end, as shown in Figure 8, consists of an XBee-PRO modulus, an 
XBee Explorer Regulated, and an Arduino Mega 2560 microcontroller. The XBee Explorer 
Regulated here plays the same role as it was used in the wireless transmission end. 
However, there were no batteries on the Arduino Mega 2560 because it was powered by 
computer through a USB cable. The XBee-PRO on the Arduino Mega 2560 was paired with 
the other XBee-PRO on the Arduino Uno in the wireless transmission end to receive the 



www.manaraa.com

156 

transmitted data. After that, the data will be stored in a data-storage module with 4096 
bytes non-volatile memory on the Arduino Mega 2560.  

 

 
Figure 8: Wireless receiving end 

 
 
 

3.7. Packaging      
 

Robust packaging is required to protect both the sensor and wireless transmission devices 
such as XBee-PRO modulus and microcontroller to make sure they can work properly inside 
the concrete. The functions of the packaging include protecting the wireless transmission 
end during the sensor installation and pavement construction process, protecting the sensor 
from alkali-cement hydration reaction, and protecting the wireless transmission end under 
harsh climate and traffic conditions.  
 
Two kinds of in-house packaging were designed to protect the sensor, microcontroller and 
XBee-PRO modulus, respectively. For the MEMS sensor, a piece of adhesive tape, a 
protection filter cap, and steel wool were used to make the protective package to prevent 
direct contact between the raw sensor and fresh concrete. In this packaging, a filter cap 
was placed on the top of the MEMS sensor using adhesive tape. Steel wool was used to 
attach the sensor. As for the microcontroller and XBee-PRO modulus, a small box with the 
bottom open, consisting of 12 mm thick wood board and a wood board nailed with a 180 
mm long sharp-edged wood stick, was prepared. A hole was drilled on the board nailed with 
the stick to allow the cable from the sensor to go through to connect the Arduino Uno 
microcontroller. The size of the box was 160 mm × 105 mm × 88 mm (6.3”×4.1”×3.5”) 
which was sufficient to place the entire wireless transmission system, as shown in Figure 10. 
Silicon glue and adhesive tape were used as well to seal the small gap in the box. 
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 Figure 9: MEMS sensor with packaging 
 

 
Figure 10: Packaging for wireless transmission end 

 

4. EVALUATION OF DEVELOPED WIRELESS COMMUNICATION SYSTEM  

4.1. Working principle of developed wireless system  
 
The data exchange principle of this wireless system is based on ZigBee protocol. This 
system does not require any external cables. When the system is turned on, the MEMS 
sensor will sense temperature and RH and then transfer data to XBee-PRO through Arduino 
Uno microcontroller. Then XBee-PRO in wireless transmission end will transmit data to the 
paired XBee-PRO in wireless receiving end through antenna. The data captured in wireless 
receiving end will be stored in Arduino Mega 2560. Thereby, the wireless receiving end with 
a computer must be placed nearby to receive the data packets because only the Arduino 
Mega 2560 microcontroller is used to store data in this wireless system. At last, the data can 
be downloaded to the computer through a software, referred to as “CoolTerm”. CoolTerm is 
a simple freeware serial port terminal application without terminal emulation which allows 
data exchange with hardware connected to serial ports (Sparkfun Electronics, 2014). The 
output data exported from the system are temperature, relative humidity, and dew point. 
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4.2. Comparison between wired MEMS system and wireless MEMS system developed 
 

Figure 11 provides an overall system-level comparison between wired MEMS system and 
wireless MEMS system developed. In the wired MEMS system, the sensor should be 
connected to the data reader and the computer through cables to continuously monitor the 
concrete properties and download the data. As a consequence, both the data reader and 
the computer require electrical supply for operations. However, the developed wireless 
system does not require any external cables which can save installation time and reduce the 
risk of malfunction of sensors.  
 

 
Figure 11: Comparison between pervious MEMS system and implemented wireless system  

 

4.3. Evaluation of wireless communication capacity 
 

To test the reliability and survivability of the wireless communication system inside the 
concrete, both wireless ends were embedded in the concrete as shown in Figure 12 to 
conduct a success rate test. Success rate means the success rate of data transmitted from 
transmission end that can be received by the receiving end. The higher the rate is, the more 
reliable the system will be.  
 

 
Figure 12: Wireless MEMS system inside concrete 
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The success rate test was conducted for wireless MEMS system inside concrete buried 
underground by increasing horizontal and vertical distances between wireless transmission 
and receiving ends (See Fig 13). 
 

 

                                
                                                  (a)                       (b) 

  
 

(c) 
 

Figure 13: Success rate test: (a) wireless MEMS system inside concrete buried 
underground, (b) measuring horizontal distance, (c) four positions to measure vertical 

distance 
 
 

The temperature and RH measurements acquired by the wireless sensor system during the 
success rate test are presented in Figures 14 and 15. The implemented wireless 
communication system was able to transmit temperature and RH measurement when the 
receiver was positioned approximately 46m away from transmission end with an almost 

100 success rate. Furthermore, it was also found that the success rate increased as the 
vertical distance decreased.  
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Figure 14: Temperature measurement  

 

      
           Figure 15: Relative humidity measurement 

 

5. SUMMARY 
 

The objective of this study is to investigate the feasibility of developing wireless based 
MEMS for concrete pavement structural health monitoring. The system requirements in the 
development of wireless MEMS system were identified from field experiences from US-30 
highway wired MEMS system installation and monitoring. In the development, a wireless 
communication system was integrated with off-the-shelf MEMS sensors that were originally 
designed to be wired. The wireless MEMS system developed was capable of providing 
reliable temperature and RH measurement data over more than approximately 46m (150 ft.) 
from the receiver when it was embedded inside concrete. However, the entire system was 
still energy consuming under current limited energy source. At a reasonable data sampling 
rate, it can just work for few days with twelve 1.5AA batteries. Also, the lifetime of batteries 
could easily be impaired by the harsh environmental factors like high temperature during 
concrete hydration. Both extremes of temperature and humidity magnitudes can reduce the 
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lifetime and capacitance of the batteries.  Furthermore, future research should focus on 
improving the memory capacity and making the whole system smaller.  
 
Some recommendations to resolve the aforementioned issues are: 

 A power management circuit called Texas Instruments Debuts TPL5000 power timer 
can be used to control power output of battery, which can extend the current 
working time to approximately several years in ideal conditions. 

 A micro-SD card or QuadRam Shield can be added on the microcontroller to 
tremendously increase the memory size. 

 A smaller microcontroller called Arduino Fio with XBee plug as shown in Figure 16 
can be used to replace the original microcontroller to reduce the overall system size. 

 

 

 

 

 

 

 

 

Figure 16: Comparison between Arduino Fio (left) and Arduino Uno (right) 
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ABSTRACT 

Realistic characterization of pavement layer properties and responses under in-situ field 

conditions is critical for accurate airport pavement life predictions, planning pavement 

management activities as well as for calibration and validation of mechanistic-based 

pavement response prediction models. The recent advancements in Micro-Electro-

Mechanical Sensor (MEMS)/Nano-Electro-Mechanical Sensor (NEMS) technologies and 

wireless sensor networks combined with efficient energy scavenging paradigms provide 

opportunities for long-term, continuous, real-time response measurement and health 

monitoring of transportation infrastructure systems.  

This paper presents a summary review of some recent studies that have focused on the 

development of advanced smart sensing and monitoring systems for highway pavement 

system with potential applications for long-term airport pavement health monitoring. Some 

examples of these potential applications include: the use of wireless Radio-Frequency 

Identification (RFID) tags for determining thermal gradients in pavement layers; self-

powered MEMS/NEMS multifunction sensor system capable of real-time, remote monitoring 

of localized strain, temperature and moisture content in airport pavement that will eventually 

prevent catastrophic failures such as blow-ups on runways during heat waves.  

INTRODUCTION 

Airfield pavements are designed and constructed to provide adequate support for the 

various loads imposed by both aircrafts and environmental (climate) conditions such as 

temperature or moisture variations. In general, airfield pavements are fundamentally different 

from highway pavement in terms of the applied load properties. Typically, airfield pavement 

deals with higher load magnitude and tire pressure from airplanes, but fewer load repetitions 

compared to highway pavement. Although both airfield and highway pavements are prone to 

have deterioration from traffic and environment loads, airfield pavement usually 

predominately shows the environmental load related distresses rather than traffic load related 

ones [1]. 

For airport concrete pavement, one of the most common environmental related distresses 

is blowup [2], which is the disintegration of pavement due to axial compression force 

generated by slab expansion due to pavement temperature and moisture changes. It usually 

occurs at transverse joints or cracks in hot weather if their widths are not wide enough for 

concrete expansion. If pressure from concrete expansion in insufficient width cannot be 

relieved in time, it results in a localized upward movement of slab edges or shattering in the 

vicinity of the joint [3, 4, 5, and 6].  

Blowup in the airport runway is very dangerous for aircraft operations and it needs 

immediate attention. Figure 1 presents a case of airport runway pavement blowup failure at 

Ankeny Regional Airport in Iowa in summer, 2011, which was reported in Central Region 

Airport Certification Bulletin [7]. Excessive hot weather and the associated heat wave 

reportedly caused the pavement blowup and buckling. As shown in Figure 2, a Raytheon 

Premier One jet hit the blowup spot during taking off and damaged its landing gear.  
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Figure 1. Blowup in Ankeny Regional Airport Runway (Photo courtesy of  

Snyder & Associates, Inc./Polk County Aviation Authority) 

 

  

Figure 2. Damaged Aircraft in Ankeny Regional Airport Runway [7] 

 

The other airport concrete pavement distress types caused by environmental (climate) 

loads in association with traffic loads include corner break, longitudinal, transverse, and 

diagonal cracks. These distresses can be aggravated by curling stresses induced by different 

thermal gradients between top and bottom parts of concrete slab.   

 Airport pavement distresses, when deemed detrimental to aircraft operations, can also 

lead to runway closure. For instance, a number of international flights in Tribhuvan 

International Airport in Kathmandu, Nepal were delayed, diverted and cancelled due to 

airport flexible pavement distress during August 2013 [8]. Figure 3 presents rutting and 

potholes occurring in the asphalt overlay of the runway. During the summer season of 2013, 

the asphalt overlay surface temperature went over 60 ˚C leading to rutting under repeated 

heavy aircraft loads. In the coming monsoon rain after summer season, water was 

accumulated on the rutting surface and then infiltrated inside the pavement through cracks. 

Potholes were developed from water in the underlying structure and aircraft wheel loads. As 

a consequence, this runway had to be closed. The impact of this event not only delivered a 

negative message to other countries but also caused a huge loss on their tourism business.  
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Figure 3. Airport Pavement Rutting (Left) and Potholes (Right) [8] 

 

In addition to pavement distresses, the Foreign Object Debris (FOD) referred as a foreign 

substance or debris is considered to cause aircraft damage during its operation on airport 

runway [9]. Common FOD include aircraft parts, ground vehicle parts, stone, wild animals, 

garbage, and so on. Pavement deterioration including raveling and weathering, blowup, 

various cracks, corner break, popouts, and patching have significant potential to produce 

FOD as well [10, 11].   

Pavement distresses and FOD are dangerous for aircraft operations. Once they occur on 

airport runways without any attention, the aircraft can be damaged during takeoff or landing 

and consequently the passengers inside the aircraft may be injured or lose their lives. The 

runway needs to be closed for repairing distresses removal of FOD.  A closed runway 

signifies economic losses resulting from flight delays, cancellations, etc.      

Pavement deterioration, as a major airport safety concern, can be controlled through in-situ 

pavement response and performance monitoring. In addition, realistic pavement responses 

from in-situ field conditions are critical for accurate airport pavement life predictions, 

management, calibration and validation of mechanistic-based pavement response prediction 

models. Real-time and continuous health monitoring and management of airport pavement 

systems have the potential to enable sustainable, smoother, and also safer airport 

infrastructure systems. This paper aims to review the state-of-the-art in smart airport 

pavement instrumentation and proposes a conceptual model of a smart airport pavement 

health monitoring system which includes MEMS-based sensors, a FOD detector, an 

intelligent data mapping model, as well as pavement distress and FOD warning systems.  

 

HEALTH MONITORING OF AIRPORT PAVEMENT SYSTEMs 

Needs of Airport Pavement Health Monitoring 

Pavement deteriorations caused by aircraft loading, temperature, and moisture variations can 

be one of the major concerns in the safety of airport operations. Other pavement related 

safety concerns include the skid resistance (friction), FOD on pavement surface and the 

infiltration of water into the pavement sub-structure. Pavement health monitoring could be an 

effective solution to prevent the aircraft accidents and damages caused by poor pavement 
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performance and FOD. Pavement health monitoring is an extension of the structural health 

monitoring (SHM) concept which employs advanced technology to allow the assessment of 

the structural reliability and detection of structural changes in civil infrastructure, mainly of 

buildings and bridges.  

In recent years, with advancement in sensor and wireless technologies, SHM demonstrates 

that it can be applied for pavement functional and structural assessments by monitoring 

pavement responses and environmental conditions (temperature, moisture, etc.) in real-time. 

An early warning of incipient problems enabling the in-time scheduling and planning of 

maintenance can be provided before the appearance of remarkable structural changes to 

minimize unnecessary costs.  

In the end, the continuously measured data can be utilized to improve distress prediction 

models, which can help engineers prolong the structure service life to minimize life cycle 

costs and the current existing defects can be corrected as well. Hence, SHM employing smart 

sensor system is an effective way to improve the pavement safety and to reduce maintenance 

cost for airfield pavement. 

How to Conduct Health Monitoring of Airport Pavement Systems? 

Health monitoring of airport pavement system requires smart sensing technology which can 

provide long term, continuous and real time monitoring of pavement conditions. In order to 

achieve these goals, embedded sensor interfaced with advanced wireless sensor networks is a 

cost-effective solution.  

MEMS Sensors  

The recent advancement in Micro-Electromechanical Systems (MEMS)/ Nano-

Electromechanical Systems (NEMS) technologies represent an emerging solution in health 

monitoring for transportation infrastructure system. MEMS/NMES sensor is generally 

comprised of miniaturized mechanical sensing element fabricated with silicon chip. The 

techniques of microfabrication enable different complex electromechanical systems to be 

integrated in the miniaturized mechanical sensing element. Therefore, the typical dimension 

of MEMS devices can vary from one micron to several millimeters [12]. In addition to small 

size, MEMS/NEMS sensor also has high performance with relatively low energy 

consumption. As a result, MEMS sensors have much potential in providing cost-effective 

health monitoring solutions to help engineers identify pavement deterioration before the 

distress is noticeable to the aircrafts.  

Radio-Frequency Identification (RFID) tag is a MEMS-based sensor using the radio-

frequency spectrum for digital data transmission. It can be an active or passive sensing 

device capable of both data receiving and storing. Various RFID tag types are available for 

different applications.  

For pavement temperature monitoring purpose, some of the commercial RFID tags available 

include GT-301 by GENTAG, Inc, RFID chips by RF SAW, Inc, PaveTag RFID by Minds, 

Inc, i-Q32T tag by WAKE, Inc., etc. Among these, the i-Q32T RFID tag has the capability to 

detect the inside temperature of concrete and to communicate the information to the portable 

Pro [13]. The i-Q32T, as shown in Figure 4, contains an internal MEMS sensor for 

temperature monitoring that measures and logs the temperature in definable intervals. The 

collected data could be imported into the portable Pro, shown in Figure 5, wirelessly for 

maturity calculation and saving data for posterity. The use of two-way RF communication 

between the buried tag and a portable Pro enables the portable Pro to read and write data.  
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Figure 4. i-Q32T Wireless RFID Transponder (Photo courtesy of WAKE, Inc.) 

 

 
Figure 5. HardTrack Portable Pro (Photo courtesy of WAKE, Inc.) 

 

A MEMS based multifunction sensor system is currently being developed at Iowa State 

University (ISU) to design an integrated sensor system capable of measuring different 

properties such as temperature, moisture, and strain simultaneously. MEMS based 

multifunction sensor system can reduce installation cost and installation time which will 

otherwise be incurred by installation of large number of traditional single-function sensors to 

measure each of the properties. Moreover, if it could be integrated with a wireless 

transmission system, the MEMS based multifunction sensor system will not just save time 

and money but also improve the convenience and workability of health monitoring.  

However, a truly integrated miniature multifunction sensor to detect these factors at same 

time is not commercially available because the device dimension and unit cost may be 

relatively large due to fabrication and assembling. Furthermore, it may also be more complex 

to implement a wireless transmission system for this kind of multifunction sensor compared 

to single-function sensor. Additionally, the energy consumption may be large because of 

measuring several parameters at the same time. One possible solution is to design an energy 

harvesting system by using piezoelectric materials, which can generate electric power subject 

to traffic loads, thunder vibrations, etc. 

 

Wireless Networks 

Traditional wired sensors generally cost more money than wireless sensors for health 

monitoring in civil infrastructures due to longer installation time. Furthermore, the damage 

and corrosion of wires in civil infrastructures is difficult to repair or replace as well. Wireless 
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sensor technologies based health monitoring has been investigated in civil infrastructures 

mainly focusing on building and bridges structures.    

Typical, wireless technologies available for sensor systems include Bluetooth, cellular 

telephony, Wi-Fi, Zigbee, and radio frequency. These technologies have different data rate, 

range, power consumption, ease of implementation, cost, and so on. The use of different 

wireless technologies also leads to the use of different wireless network topologies including 

star, peer-to-peer, and two-tier network [14]. Hence, the choice of the appropriate wireless 

technologies and networks depends on the specific environment.  A robust hardware 

architecture and packaging for wireless sensor is also required to make wireless sensor 

system functional under the high alkali environment from concrete hydration and repeated 

vehicle loads. In addition, the limited power sources of on-site conditions can affect the 

working life of the wireless sensors in concrete structure. Moreover, the effective distance 

range of sensors in concrete should be considered as well. Typically, the longer the distance, 

the more power consumption there will be. It is critical to select a balance point between 

these factors. 

Electro-optical (EO) Sensing 

A FOD detection system can help airport management to detect FOD which can pose a 

serious threat to the safety of airport operations. An Electro-optical (EO) sensing system has 

been proposed as a potential solution that can detect FOD by converting light ray into 

electronic signal. In 2009, Stratech Systems, Ltd., developed an electro-optical sensing 

system called as iFerret to evaluate runway condition of Chicago O’Hare International 

Airport (ORD). The performance of this electro-optical sensors system was assessed and 

reported by various studies [11, 15, and 16]. This iFerret is an optical video based sensors 

system consisting of high-quality image capture system. The high resolution video sensors 

with zoom capabilities in the passive sensing system were mounted in several towers to 

ensure it to sweep a large scan area continuously. Furthermore, the video sensor can scan the 

pavement surface almost up to 1,100-ft by using ambient lighting conditions [15]. All the 

sensors in the system interfaced with image-processing software are networked to the central 

console located in the air traffic control tower. The iFerret system detects the FOD by 

interpreting the data collected by the electro-optical sensors and then sends an alert to the 

operator if an FOD is detected. The location and video image of the FOD will be also sent to 

the operator to confirm. As a consequence, hazard assessment and clear-up work can be 

processed. 

 
Figure 6. iFerret Electro-optical Sensor at Chicago O’Hare International Airport  

(Source :  iFerret™, http://www.stratechsystems.com/iv_iferret.asp) 

 

http://www.stratechsystems.com/iv_iferret.asp
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HEALTH MONITORING OF PAVEMENTS: EXAMPLES 

Runway Instrumentation at Denver International Airport 

In the 1990s, the runway construction at Denver International Airport (DIA) included a 

comprehensive instrumentation of strain gages, Thermocouples, and Time Domain 

Reflectometrs (TDR).  A total of 460 sensors were instrumented in the sixteen slabs in the 

runway to monitor the pavement response generated from aircraft wheel and environment 

loading. Among the installed sensors, dynamic sensors measured strain, vertical 

displacement, airplane speed and acceleration when an airplane pass triggered the sensors. A 

data acquisition system (DAS) was placed in-situ for data collection and downloading to an 

ORACLE7 database managed by FAA technical center to analyze aircraft and pavement 

data. Furthermore, the performance of this system was also assessed later by Dong [17], Lee 

[18], Rufino [19], etc.   

Optical Fiber Sensors in Kai-Shek International Airport 

In 2002, Chou and Chen [20, 21] conducted a study at Chiang Kai-Shek (CKS) International 

Airport in Taiwan to monitor pavement joint movements and thermal stresses at one taxiway. 

In this study, several different types of dynamic and static strain gages were installed in 

concrete pavements. Dynamic strain gages in this study include H-bar strain gages, dowel bar 

strain gages, and gear position gauges. For static strain gages, optical fiber sensors and 

thermal sensors were installed.  The Smartec SOFO optical fiber sensors measured concrete 

joint movements (expansion and contraction).  The optical fiber sensors were tied to the rebar 

racks before concrete paving and they started recording data after concrete paving with a 20 

minute interval. A DAS was connected to optical fiber for data transmission.  

 
(a)                                                      (b) 

Figure 7. (a) SOFO Optical Fiber Sensor, (b) DAS System [21],  

Piezoelectric Strain Sensor for Smart Asphalt Pavement Monitoring 

Lajnef et al. [22] investigated a wireless piezoelectric strain sensor system to estimate fatigue 

damage for asphalt pavements in 2013. A wireless integrated circuit sensor was interfaced 

with a piezoelectric transducer for relatively low energy consumption.  The piezoelectric 

transducer had an array of ultra-low power floating gate (FG) computational circuits to 

supply sensor operating power from vehicle movements. The sensor could measure strain 

change and store the data on-board for periodical transmission trough RF. A central database 

was required to receive the uploaded data from sensors. A RF reader mounted on a moving 

vehicle could be used to read and download the data from the sensor as well. 
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Figure 8. Prototype Installation of Self-powered Strain Sensor [22] 

 

Wireless MEMS System for Concrete Moisture Monitoring   

Figure 9 compares the wired MEMS scheme for in-situ concrete moisture monitoring with a 

wireless MEMS scheme in a recently completed study conducted by the authors and 

collaborators from the electrical engineering department at ISU. In the working scheme of 

wired MEMS scheme, the sensor should be connected to the data reader and the computer 

through cables to continuously monitor the concrete properties and download the data. As a 

consequence, both the data reader and the computer require electrical supply for operations. 

However, the wireless system does not require any external cables which can save 

installation time and reduce the risk of malfunction of sensors. 

 

 
Figure 9. Comparison between Wired MEMS based Moisture Sensor System and Wireless 

MEMS based Moisture Sensor System 

 

 

 

 

A CONCEPTUALSMART AIRPORT PAVEMENT HEALTH MONITORING 
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A health monitoring and management system for airport pavements could provide in-situ 

pavement conditions and responses to prevent multi-faceted safety concerns including 

pavement deteriorations and FODs from aircraft operations.     

Figure 9 illustrates a conceptual design of airport health monitoring system. In this figure, the 

embedded smart MEMS sensor subsystem is a wireless multifunction MEMS which can 

measure strain, temperature, and moisture simultaneously. The robust packaging subsystem 

should be implemented to protect the embedded smart MEMS sensors during installation and 

operation under harsh climatic and traffic conditions. The smart MEMS sensor subsystem 

can be integrated with EO based distress and FOD detectors to monitor actual pavement 

surface condition.  A reliable data acquisition subsystem mounted on a moving vehicle or 

control tower can be used to collect, store, and transfer data from MEMS sensors and EO 

based detectors. The intelligent data mapping model subsystem employing sensing data 

fusion and geo-spatial analysis approach can be utilized in data mapping of entire section 

from collected data from sensor installed in specific locations. Realistic characterization of 

pavement layer properties and responses through intelligent data mapping model subsystem 

can be utilized for early warning of critical distress initiation, accurate airport pavement life 

predictions, planning pavement management activities as well as for calibration and 

validation of mechanistic-based pavement response prediction models. 

 
Figure10. Conceptual Smart Health Monitoring of Airport Pavement Systems 
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SUMMARY 

The recent advancements in Micro-Electro-Mechanical Sensor (MEMS)/Nano-Electro-

Mechanical Sensor (NEMS) technologies and wireless sensor networks combined with 

efficient energy scavenging paradigms provide opportunities for long-term, continuous, real-

time response measurement and health monitoring of airport pavement systems. 

MEMS/NEMS represent an innovative solution in airport pavement condition monitoring 

that can be used to wirelessly detect and monitor structural health (damage initiation and 

growth) as well as functional health in airport pavement structures. Static or dynamic 

sensors, such as strain gages or pressure cells, have also been used in new or existing airport 

pavements, but are mostly restricted to experimental studies on a short-term basis. The 

required properties for health monitoring of airport pavement systems include multifunction 

sensing capacity, wireless communications, lower energy consumption for operation, robust 

packaging, reliable data acquisition, intelligent data mapping, and early warning of critical 

distress initiation. Such health monitoring of airport pavement systems is crucial for:  

 Maintaining the structural and functional performance for safe aircraft operations 

 Providing optimal timing of maintenance/rehabilitation activities and efficient allocation 

of scanty resources 

 Understanding complex pavement system behavior to achieve sustainable  airport  

pavement systems 
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APPENDIX B: TEMPERATURE, MOISTURE AND STRAIN PROFILES FROM US-30 

HIGHWAY  

 

Figure B-1. RFID extended probe measurement in spring 2014. 

 

Figure B-2. iButton measurement in spring 2014.  
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Figure B-3. MEMS digital humidity sensor temperature measurement in spring 2014.  

 

Figure B-4. MEMS digital humidity sensor RH measurement in spring 2014.  

 

0

10

20

30

40

50

60

70

80

3/
28

/1
4 

7:
00

3/
29

/1
4 

7:
00

3/
30

/1
4 

7:
00

3/
31

/1
4 

7:
00

Te
m

pe
ra

tu
re

 (˚
F)

Date and Time

0.1 in./8 in. away/MEMS RH_Temp.4

50

55

60

65

70

75

80

85

90

95

100

3/
28

/1
4 

7:
00

3/
29

/1
4 

7:
00

3/
30

/1
4 

7:
00

3/
31

/1
4 

7:
00

Re
la

ti
ve

 H
um

id
it

y 
(%

)

Date and Time 

0.1 in./8 in. away/MEMS RH_Temp. 4



www.manaraa.com

181 

 

Figure B-5. Strain measurement in summer 2013.  

 

Figure B-5. Strain measurement in winter 2013.  
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APPENDIX C: SET TIME TESTING (ASTM C403) 

 

This appendix displays the set time test in accordance with ASTM C403. 

 

Figure C-1. Set time test (ASTM C403) 
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APPENDIX D: SUCCESSFUL RATE TEST RESULTS 

 

This appendix displays the results from successful rate test and temperature and moisture 

data obtained from the test. 

 

 

Figure D-1. Success rate test results. 
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Figure D-2. RH measurement from success rate test. 

 

Figure D-3. Temperature measurement from success rate test. 
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